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ABSTRACT
In this paper, we discuss the impact of cognitive load (CL)
measuring to the design of In-Vehicle Information Systems
(IVIS). Three ways of assessing CL known from literature
are discussed in terms of their applicability to non-intrusive
in-car applications. A fourth way to estimate CL is pre-
sented. We add some thoughts on estimating the complexity
of presented information and combine it with the knowledge
of the driver’s CL and driver’s user model to approaches for
adapting the system to the driver’s current mental state.
Furthermore, we shortly introduce our currently developed
presentation toolkit PresTK, which takes the discussed fac-
tors into consideration.

Categories and Subject Descriptors
H.5 [Information Interfaces and Applications]: User
Interfaces; H1.2 [User/Machine Systems]: Human fac-
tors—complexity measures, performance measures

General Terms
Theory

Keywords
cognitive load, presentation complexity, automotive infor-
mation systems

1. INTRODUCTION
The rapid increase of complex information systems in our
environment and especially in the car has raised the level of
attention required from the user, i.e., the driver. In order to
ensure the usefulness of information presented by an in-car
Human Machine Interface (HMI), the question whether or
not it can be adequately processed by the driver has to be
asked. Similar to the specification of the hardware require-
ments for a certain piece of software, we will have to specify
the cognitive requirements of processing a certain piece of
information.
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Figure 1: The Cognitive Load of the driver can be
used for adapting the User Interface

In a situation with high cognitive demand, information pre-
sentation could for instance be simplified by removing less
relevant information to ensure that the driver registers all
important facts.
Although the definitions of Cognitive Load (sometimes also
called mental workload or cognitive workload) slightly differ
from each other, they are typically similar to Wickens’ defi-
nition as “the relationship between the cognitive demands of
a task and the cognitive resources of the user” [23]. A more
detailed definition is given by [3]: “the demands placed on
a person’s working memory by (a) the main task that she
is currently performing, (b) any other task(s) she may be
performing concurrently, and (c) distracting aspects of the
situation in which she finds herself”. [4] provides a survey
of alternate definitions.
Traditionally, workload assessment techniques are divided
in three groups: subjective measures (questionnaire based,
self-reported), performance-based measures, and physiolog-
ical measures. By widening the scope of assessment beyond
actual measuring, we might add a fourth category of deduct-
ing cognitive workload from the environment.
Figure 1 shows the connection between the situation/context,
the drivers cognitive workload and his driving performance.
As we can see, the presentation manager acts as a link in a
feedback loop, regulating indirectly the CL by adapting the
HMI. This is assisted by presentation complexity estimation.
In this paper, we discuss the implications for designing in-car
HMIs as a prerequisite for the currently developed presen-
tation toolkit PresTK [9], which tackles the orchestration of
mutually independent information sources.



2. COGNITIVE LOAD ASSESSMENT
Knowing the current cognitive state (here: CL) of the driver
is very useful for adapting the HMI according to his needs.
As a first step, we need to make sure that the measurement
reflects reality as close as possible in order to reliably utilize
it later on. In this section, we discuss several ways of CL
assessment in respect to their usefulness in in-car applica-
tions and their feasibility for non-intrusive measuring while
driving.

2.1 Subjective measures
A simple and reliable way to assess a subject’s workload is
self-reporting, assuming that the person is cooperative and
capable of introspection and reporting their perceived work-
load, either directly or by answering questions resulting in a
measure. Commonly, questionnaires for self-reporting work-
load refer to a task already performed. One of the most
widely known methods here is the NASA Task Load Index
(NASA-TLX). Self-reporting of workload usually covers a
single task and cannot be used without extension or modi-
fication to report on a complex situation involving several,
potentially overlapping tasks. Furthermore, applying ques-
tionnaires is an intrusive procedure (adding another task to
the subjects working memory) and can only be done after
the task being performed. Although some tests are intended
to be administered “online” right after performing the task,
the test might interfere with the performance in subsequen-
tial tasks. Furthermore, none of the online questionnaires
are designed for real-time assessment.
It is important to keep in mind that most of these question-
naires are not designed for automotive applications, and not
all of them measure the same dimensions–if they are mul-
tidimensional at all. Dimensions necessary in the driving
context are detailed in [9].
The NASA Task Load Index (NASA-TLX), for instance,
which was developed in a “multi-year research effort aimed
at empirically isolating the factors that are relevant to sub-
jective experiences of workload” [14] was originally intended
for crew complement in the aviation domain. Since its in-
troduction in the mid-eighties, it has spread significantly
beyond the original application, focus and language [13]. It
is designed as a short questionnaire with 6 questions to be
answered on a 21 point scale. The result of the test after
a complex evaluation is a multidimensional numerical value
on six subscales, only one of them being mental demand.
The Bedford Scale [6] uses a completely different approach.
It is a uni-dimensional rating scale designed to “identify op-
erator’s spare mental capacity while completing a task”. It
uses a hierarchical decision tree guiding the user to a rating
scale value between one and ten. It is an obvious advantage
of the process that in each step of the decision tree the symp-
toms of having exactly that level of workload are verbally
described. This prevents the user from a natural tendency
to avoid the extreme values of the scale, even if appropriate.
The Subjective WORkload Dominance (SWORD) technique,
as another example, is based on mutual comparison between
tasks [22]. The user rates all possible pairs of given tasks in
mutual comparison on a scale. A judgment matrix is then
calculated based on this data. If this matrix is consistent,
relative ratings of each task can be determined.

Figure 2: Connection between situation, cognitive
load and driving performance

2.2 Performance based measures
Assuming that an increased CL diminishes human perfor-
mance, we can use performance measures as an indicator of
actual workload. This assumption is backed by the Yerkes-
Dodson-Law [24], which is based on an experiment with elec-
tric shocks on laboratory mice. Unfortunately, this law has
some serious gaps: 1. The methods of calibrating electricity
were too crude for exact measurements, 2. the implicit un-
derlying assumption of a linear dependency between stimu-
lus and level of arousal was never validated, and 3. the con-
nection between the behaviour of mice and human beings
was just implicitly assumed. Despite these flaws, the use
of the Yerkes-Dodson-Law has been established as a valid
method [20].
The basic statement is–rephrased for our domain–that the
driver’s performance is best at a medium level of arousal /
workload, i.e., he should neither be bored nor overwhelmed.
[12] also examined the impact of cognitive distraction and
showed that it has a negative influence on driving perfor-
mance and safety, especially on the driver’s visual behavior.
Two approaches of performance measures are feasible in
an automotive environment: measuring the driving perfor-
mance and measuring the reaction time to events such as
displayed information or events outside the car.

Driving performance
Recent literature on measuring the drivers CL strongly em-
phasizes the role of speed and steering wheel angle and their
respective change over time. This is very convenient, since
this information is easily acquired using the car’s CAN-bus.
[16] built a prototype to estimate driver distraction in a sim-
ulator based on a Fast Fourier Transformation (FFT) of the
steering wheel angle. [21] use an artificial neural network
(NN) to determine the driver’s current level of distraction.
Using a three layered Multi-Layer-Perceptron, a single nu-
merical value as the level of distraction ranging from one
to five is deducted from four input variables: speed, speed
variation, steering wheel angle and steering wheel angle vari-
ation. An adaptive system taking driver distraction into
consideration was evaluated as being superior in terms of
perceived safety and usability to the non-adaptive version.
Models based on neural networks have proven successful pre-
viously, e.g. [1]. [19] estimates CL complexity using both
performance and physiological data in a simulator. As per-
formance measures, the lateral position variation and steer-
ing wheel activity is observed. That data is then fed into a
radial-basis probabilistic neural network (RBPNN).

Reaction time and time perception
Reaction time is a convenient way of measuring performance.
[17] clearly shows a direct impact of driver and situational
factors on break reaction time (BRT) and acceleration / de-
celeration reaction time (ADRT). [5] measured the impact of
distraction by mobile phones on the driver’s reaction time.
Many other examples can be found in literature.



As another interesting aspect, CL seems to directly influ-
ence the perception of time. In a user study, [2] measured
the difference between time intervals produced by a driver in
different situations and compared the mean deviation from
the actual time with the CL of the driver measured by other
means. Results show a direct connection, i.e., perceived time
correlates with actual cognitive workload.

2.3 Physiological measures
Although usually used in medical research and examination
for obtaining information of state and performance of major
organs, we can also use physiological sensors for obtaining
information about the state of the subject. Most suitable for
our purpose are obviously parameters which can not con-
sciously be modified. For our purpose, it is important to
find a completely non-intrusive method of measuring. Even
small intrusion–like placing a sensor on a finger–which is eas-
ily accepted in a user study, is unlikely to find acceptance
by the driver in every day driving.
Measures known from literature include respiration, skin
conductance, temperature, eye movement, pupil diameter,
and voice analysis. Only the last three of those can be mea-
sured in an unintrusive way, but the analysis of the data
can get quite complex. [8] discusses the different methods
in detail.

3. COGNITIVE LOAD BY CONTEXT
As we discussed in the previous section, applying traditional
CL measuring techniques is not always desirable in our do-
main. Important features are real-time conduction, imme-
diate availability of results (e.g. results do not have to be
entered manually in the system), and unintrusiveness. Ta-
ble 1 compares the advantages and disadvantages of different
approaches.

Measure Real-Time Immediate Intrusive
Subjective - - - - -
Performance ++ + ++
Physiological ++ ++ - -

Table 1: Suitability of cognitive load assessment for
real time automotive applications is limited.

As shown in Figure 2, current CL might also be estimated
using another path, i.e. by assessing the impact of the en-
vironment on the driver. Although the context might not
be sufficient for an exact estimate of the driver’s state, we
can safely assume some factors to be influential to his cog-
nitive demands. Driving on the highway or in dense city
traffic is probably more demanding than driving on a quiet
rural road. Driving at a moderate speed is less stressful than
driving at very high speed or being stuck in a traffic jam.
Also, environmental conditions such as noise level inside and
outside the car can be measured and considered. The cars
built-in information systems can keep a history of informa-
tion presented to the driver, from which we can conduct the
cognitive demand. A lot of information flooding the driver
in a very short period of time is likely to raise his CL.
[18] used Dynamic Bayesian Networks (DBNs) and data ob-
tained from the car directly to generate a continuous esti-
mate of the drivers load. In a second step, the DBNs were
transformed into arithmetic circuits for efficiency reasons,
especially considering the usually limited computing power

Figure 3: A Presentation manager aware of the cur-
rent cognitive load of the driver can positively influ-
ence driving performance

of a vehicle. This concept could be adapted and extended
to other information sources in order to increase the quality
of the estimate.
In our current research, we examine the impact of visual en-
vironmental complexity and speed on the driver’s cognitive
load in a simulator experiment [11].

4. ESTIMATING COMPLEXITY
In order to assess system-generated CL, we need to be aware
of the impact of system-generated presentations to the driver,
i.e. estimate presentation complexity. The approach for an-
swering this question is depending on availability of struc-
tured data. We distinguish three different cases:
1. Structured information about presentations is available as
a blueprint in the system. In that case, experts can analyze
and annotate this information. This enables us to choose
the most appropriate presentation type at runtime.
2. When obtaining structured presentations at runtime, we
can analyze for instance linguistic complexity, amount of in-
formation pieces, font size, complexity of icons and graphics,
and other factors. [7] for instance presented a measure for
linguistic complexity, which could be used both for analyzing
textual on-screen presentation as well as for estimating the
complexity of synthesized speech output. Similar measures
can be found in literature. [15] provides a very detailed sur-
vey and quantitative analysis on the impact of parameters
such as font size and contrast on the average glance time of
the driver. We propose a layout-based procedure to combine
previous research results in [10].
3. We obtain an unstructured presentation in form of an
image or an audio file, or both. Chances of making a very
good analysis of its complexity in real time are not very good
then, but we might be able to give a rough estimate based
on formal parameters described in case 2.

5. IMPLICATIONS FOR IVIS
How can we adequately utilize the previously collected in-
formation? Figure 3 shows the impact of a presentation
manager to the driver’s CL. By assessing both information
complexity as well as measuring CL, presentations can be
modified such that in high demand situations the additional
cognitive workload is kept at a minimum. Complex presen-
tations can be avoided or replaced by presentations with a
simplified version of the same content, or, in case of low pri-
ority, skipped altogether. If complex presentations have to
be presented, we can make sure that the time for process-
ing them is sufficiently long. If new and potentially difficult



Figure 4: The presentation toolkit PresTK considers
drivers cognitive load and information complexity.

to grasp graphical concepts are used in the HMI, we may
consider introducing them in low demand times and only
use them as well in high demand times after we can assume
the driver’s familiarity. Another aspect to be considered is
the individual’s cognitive capacity. Determining factors are
(among others) age, experience and skills.

6. THE PRESTK TOOLKIT
The context of the research presented in this paper is the
currently developped presentation toolkit PresTK [9]. Its
architecture (see figure 4) reflects both the dynamic nature
of the driving environment as well as the double restric-
tion of available resources: There are technical restrictions,
e.g., the available space for presenting information is lim-
ited, which is followed up by the cognitive limitation of the
driver. By both analysing the complexity of the presented
information as well as monitoring the current cognitive load
of the driver, presented information can be adapted in the
scheduling process and be filtered in high demand times.
The toolkit is designed with the automotive domain in mind,
but can be used more generally for similar problems as well.
By using a component-based structre, we add flexibility to
customize several components, the selection of components
used, and thus the architecture required in general.

7. CONCLUSIONS
Real-time assessment of the drivers state, especially his CL,
is an important factor for adapting IVIS and making the
flow of necessary information more efficient without over-
whelming the driver. As a foundation, we need a combina-
tion of either measuring or estimating CL with an approx-
imate quantification of the complexity of the information
presented. The resulting system serves as a regulatory cir-
cuit between HMI, driving performance, and CL. Individual
need for adaptation may vary among drivers, depending on
their cognitive capacity. We discussed the options for nec-
essary building blocks and their suitability for this endeavor
in this paper. The concepts presented in this paper provide
a part of the foundation for the development of the presen-
tation toolkit PresTK.
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