
Towards a Software Architecture for Device Management in
Instrumented Environments

Christoph Endres
Saarland University

Saarbrücken, Germany
endres@cs.uni-sb.de

ABSTRACT
An infrastructure for scalable plug-and-play device man-
agement in an instrumented environment is presented.
A prototype of the system is described and issues of the
overall architecture are addressed.

1. INTRODUCTION
The FLUIDUM project (www.fluidum.org) is currently
building an instrumented environment in order to inves-
tigate interaction techniques for ubiquitous computing.
An infrastructure for device communication has to be
provided that allows fast prototyping and provides a
stable foundation for the projects devices, scalable to
desk-, room-, and building-level.
In analogy to the well known concept of a window and
driver manager of a conventional desktop computer I
am working on such an infrastructure for instrumented
environments of various scales.
At the core of this system is a device manager with a
dynamic plug and play mechanism for possibly fluctuat-
ing devices (e.g. PDAs or laptops) in the environment.
A prototype of this device manager is built. Its archi-
tecture is described in the following section. Finally, I
discuss issues raised during the implementation of the
prototype.

2. ARCHITECTURE OF THE PROTOTYPE

2.1 Design goals
The design of the device manager is guided by several
constraints. In the FLUIDUM project it will be used
in three differently scaled instrumented environments,
with a potentially widely varying number of devices and
applications. Also, in order to cooperate with other,
similar projects at the same office, the device man-
ager has to be reusealbe in other contexts. In order
to achieve these goals, there are several important con-
siderations.
Since the architecture has to be open to new applica-
tions and new devices, the interfaces have to be well
defined and simple. The architecture has to be suffi-
ciently flexible for unforseen future devices. This will be
achieved by the way devices are classified, as described

in more detail below.

2.2 Overall system design
The core part of our system is a blackboard, called “the
pool”. It is used to store and exchange all sorts of im-
portant information about the environment. Connected
to the pool are several services that provide information
for the pool, or offer processing of information and then
eventually write their results back to the pool.
The plugboard service is one of those services and deals
with the device management. Besides keeping track of
all plugged devices and their features, it can trigger ac-
tions on the devices based on data stored in the pool.
For instance a service might put a request for taking a
photo with a digital camera on the pool. The plugboard
service then takes the request from the pool, captures
the requested photo and places a reference (URL) to
this photo back in the pool. The requesting service can
take this URL and process it.
The next section discusses the device manager’s ap-
proach for device classification. After that, the archi-
tecture of the plugboard is presented.

POOL

P
L
U

G
B

O
A

R
D

SERVICE

SERVICE

…

SERVICE

SERVICE

Figure 1: High level view of the system

2.3 Classification of devices
As mentioned above, one main issue in device classifi-
cation is the uncertainty about future devices. At the
current pace of hardware evolvement, it is very hard to
tell which kind of devices will have to be integrated in
the system in a few years, and next to impossible to
find a classification of devices that could handle them.
Therefore, we decided not to classify the devices, but
instead to classify the different properties of a device
(video capturing, text entering, infrared sensing, etc.)
and model a device as a list of those properties.
This approach turned out to be very flexible and useful
so far.



2.4 Plugboard architecture and device manager
The architecture of the plugboard reflects the approach
of device classification. A device is modelled as an
object containing a list of parameter/value pairs (e.g.
“name=camera01”) and a list of property APIs. The
inclusion of such a property API, e.g. “video in”, means
that the device has this property. If a property of this
type is missing, we can assume that the device can not
perform that task. The advantage of modelling those
properties as API is that besides getting information
about the device, we also acquire access to its features.
The APIs are standardized, so on encountering a certain
property API we know which functions can be called.
The central part of the plugboard is the device man-
ager server. It is a lookup service to which devices
can connect or from which they can disconnect. On
the other hand, services can also connect to the server
and request information about devices. Each connected
service will be automatically informed if there are im-
portant changes in the plugged devices. Some of those
services take care of the connection and exchange of
data to the central data pool.

SERVERD
e
v
ic

e
P

lu
g

A
d
a
p
te

r

S
e
rv

ic
e
 A

d
a
p
te

r

Table of 

devices

& their

handles

Service

p
lu

g
/u

n
p

lu
g

DEVICE

Parameters

Property API

D
e
v
ic

e
H

a
n
d
le

Property API

Property API

DEVICE

Parameters

Property API

D
e
v
ic

e
H

a
n
d
le

Property API

Property API

p
lu

g
/u

n
p

lu
g

…

…

Look-up

Monitor

Service

Figure 2: Architecture of the plugboard

3. DISCUSSION ISSUES
There are some unresolved issues in the current system
that I would like to discuss.

3.1 Centralized design as bottleneck
Although the central device manager service seems the
logical design approach, it is a potential bottleneck and
source of instability of the whole system if it fails. At
the moment, the services keep a copy of the device man-
ager’s list of all plugged devices and thus could continue
working during a device manager failure. Although sta-
ble, this solution might lead to performance issues. Al-
terantive approaches might include self-organizing struc-
tures or some sort of peer-to-peer network.

3.2 Reliable recognition of device disconnection
At the moment, the devices connect via remote method
invocation to the central server. Although there are
some stable mechanisms to detect a failure of this con-

nection, there is no sophisticated mechanism yet to de-
tect failure of a device without previous disconnecting.

3.3 Ressource management
The device manager server is a useful lookup service to
find available devices and to find out about their fea-
tures. A feature and concept for scheduling devices to
applications is yet missing. Especially a realiable lock-
ing mechanism for devices or device features in use is
missing. Also, mutual locking of different properties
on the same device is missing. For instance, a camera
currently in use in the system is not capable of simul-
taneously broadcasting a video stream and capturing a
high resolution photo. Those dependencies have to be
modelled.

3.4 Inclusion of future devices
This is a point which should be solved with our ap-
proach of device properties. The author would like to
discuss it and gather some more opinions.

3.5 Dealing with virtual devices
Some properties, for instance recognition of visual mark-
ers, do not have a hardware equivalent but are over-
lays of other properties, for instance video capturing
in this example. There current solution is implement-
ing virtual devices that plug to the server both as de-
vice (marker recognizer) as well as requesting service
(looking up devices with video capturing property). Al-
though this approach works, there might be a more el-
egant way to do this.

4. ACKNOWLEDGMENTS
This work has been funded by the German Research
Council (DFG) and the Chair for AI at the University
of Saarbrücken, Germany.


