
A Softbot for the World Wide Web

Diplomarbeit

von

Christoph Endres

angefertigt nach einem Thema von

Prof. Dr. Wolfgang Wahlster

am Fachbereich 14 - Informatik -

der Universit�at des Saarlandes

Saarbr�ucken, Mai 1999

Eidesstattliche Erkl�arung

Hiermit versichere ich an Eides Statt, da� ich die vorliegende Arbeit selbst�andig verfa�t
und keine anderen als die angegebenen Quellen verwendet habe.

Saarbr�ucken, den 22.05.1999

Christoph Endres

Acknowledgements

It would have hardly been possible to accomplish my goal without the support and help
of the following people. I would like to thank:
Wolfgang Wahlster for coming up with the interesting idea of this thesis and supporting
the development. Also, for encouraging me to write, along with him, a paper about the
Personal Picure Finder for an important national conference.
Markus Meyer for his critical and inspiring supervision.
The members of the projects PAN and RAP at DFKI GmbH for giving me the opportunity
to do some practical AI work. Mathias Bauer and Dietmar Dengler for sharing their
experience in AI and publishing matters. I was able to noticeably improve this work
through their critical remarks, our long discussions, and their continuing support by
sharing with me the latest news in AI research.
Interesting talks with members of other projects were as helpful.
I would like to thank Jochen M�uller for tips and tricks about latest Java versions and
state-of-the-art programming. His knowledge about Java seems to be in�nite, as well as
his eagerness to share it.
Wilken Sch�utz for introducing me to HyQL script writing.
Jens Haase for his cooperation in building an interface between Personal Picture Finder
and the Bitmap Information Tool.
Markus Bolz and his team made a good job at administrating the computers.
James Hendler for recommending the Personal Picture Finder's URL for the Netwatch
column of the american Science Magazine.
Robert Wirth and Markus Burkhart for inspiring ideas and helpful discussions.
Ana Garc��a for proofreading this thesis and introducing me to the basics of layout for the
�rst version of the webpage. Renato Orsinsi and Alexander Kowalski for spending a lot
of time helping me �nd the �nal.
And especially, I would like to thank my parents for their support troughout the years.

Whatever the background, one is face to face with an inscrutable positronic brain, which
the slide-rule geniuses say should work thus-and-so.

Except that they don't.

Isaac Asimov [Asi50]

Contents

Contents 1

List of Figures 5

1 Introduction 7

1.1 Motivation . 7
1.2 The Personal Picture Finder . 8
1.3 Problem speci�cation . 10
1.4 Overview . 10

2 State of the Art 13

2.1 Search engines . 13
2.2 A survey on internet agents . 14
2.3 Intelligent User Interfaces . 16

3 Underlying Technology 17

3.1 BIT - Bitmap Information Tool . 17
3.2 HyQL - A Hypertext Query Language . 20
3.3 Java . 24

3.3.1 Applets - the java.applet package 25
3.3.2 Servlets - the javax.http package . 26
3.3.3 JDBC - the java.sql package . 26
3.3.4 Networking - the java.net package 27

3.4 Graphics File Formats . 27
3.4.1 General remarks . 27

3.4.1.1 Basics . 27
3.4.1.2 On Vector formats versus Bitmap formats 28

3.4.2 Graphics File Formats on the WWW 28
3.4.2.1 Graphic Interchange Format GIF 87a 29
3.4.2.2 Graphic Interchange Format GIF 89a 30
3.4.2.3 JPEG File Interchange Format 31
3.4.2.4 Portable Network Graphics PNG 32

3.5 The Image Data Base . 32
3.6 Machine Learning . 33

2 CONTENTS

3.7 A Life-Like Presentation Agent: Persona 33

4 The Personal Picture Finder 35

4.1 The publicly accessible version . 35
4.1.1 Mode of operation . 35
4.1.2 Parallel Pull . 37
4.1.3 The Architecture of the System . 39
4.1.4 User Feedback and Database Access 42

4.2 The Mini�nder . 45
4.3 Persona . 45
4.4 The Experimental Version . 47

4.4.1 HyQL and the Personal Picture Finder 48
4.4.1.1 Metacrawler . 48
4.4.1.2 Ahoy! . 48
4.4.1.3 Lycos . 49
4.4.1.4 Altavista . 49

4.4.2 The URL generator . 49
4.4.3 Mode of Operation . 50

4.5 Experiments with Machine Learning . 57
4.6 Statistics . 60
4.7 By-products . 60

4.7.1 Netbots . 61
4.7.1.1 A shopbot for CDs . 61
4.7.1.2 An information gathering agent 64

4.7.2 The Whatsit? tool . 65
4.7.3 MultiHttpServer . 67

4.7.3.1 Architecture of the MultiHttpServer 67
4.7.3.2 Stability Problems . 68
4.7.3.3 Scheduling and forking processes 68
4.7.3.4 The server protocol . 69
4.7.3.5 A sample session . 72
4.7.3.6 Con�guration . 73
4.7.3.7 Using the administrator port 74
4.7.3.8 Start on demand . 74
4.7.3.9 Clients . 74

4.8 Related work . 74

5 Conclusion 77

5.1 Summary . 77
5.2 Outlook . 77

A Reusable Code Examples 79

A.1 Whatsit? - A graphics �le format analyzer 79
A.2 The endres.graph API . 80

CONTENTS 3

A.2.1 endres.graph.g� . 80
A.2.2 endres.graph.gif . 82
A.2.3 endres.graph.jpg . 82
A.2.4 endres.graph.png . 83

B User Manual 85

B.1 Usage . 85
B.2 Fixing problems . 86

C Access statistics 89

D Additional Information 93

Bibliography 95

Index 97

List of Figures

1.1 Internet expansion 1989 - 1998 . 7

3.1 Bitmap Information Tool BIT . 18
3.2 TriAs architecture developed in PAN . 20
3.3 Regional weather forecast page . 21
3.4 Result returned from HyQL sample script 23
3.5 Structure of a GIF87a . 29
3.6 Structure of a GIF89a . 31
3.7 DFKI Persona . 34

4.1 A webpage about Alan M. Turing . 36
4.2 Personal Picture Finder - a search result 37
4.3 Personal Picture Finder - Mode of Operation 38
4.4 Architecture of the Personal Picture Finder 39
4.5 Data
ow in the Personal Picture Finder 42
4.6 The mini�nder . 44
4.7 Results of mini�nder popping up . 46
4.8 Persona explaining the Personal Picture Finder 47
4.9 Pictures found while searching for Alan Turing 51
4.10 Rejected pictures . 53
4.11 Results of the evaluation of pictures . 57
4.12 Decision tree . 58
4.13 User interface of the CD shopbot . 62
4.14 Result of a query for 'Canned Heat' . 63
4.15 Classes of the endres.graph package . 66
4.16 Architecture of a single MultiHttpServer process 67
4.17 Request Scheduling . 68

B.1 User interface on the webpage . 86

C.1 Access (sorted by months) . 89
C.2 Access (sorted by days) . 90
C.3 Access (sorted by time) . 90
C.4 Access (sorted by top-level domains) . 91

D.1 Video clip: Presentation at the castle . 93

Chapter 1

Introduction

1.1 Motivation

Today, the World Wide Web (WWW) is the biggest known information system. At the
moment it contains about 300 million documents and is used by more than 40 million
users.
In 2002, the|only 10 years old|WWW will have one billion users. Figure 1.1 shows the
explosion of the internet after Tim Berners-Lee and Robert Cailliau [BLCG92] invented
the WWW in 19921.

10000000

15000000

20000000

25000000

30000000

35000000

40000000

5000000

 user

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Figure 1.1: Internet expansion 1989 - 1998

Finding relevant information is an emerging problem which seems to get worse by the
minute. An information system turns practically useless, if the information required is

1Actually the �rst submission of a Web proposal at CERN dates back to august 1990, but until the
release of the Viola browser by Pei Wei in July 1992 this was a rather theoretical work.

8 1. Introduction

stored, but not available to the user. In the case of the internet, information might get
hidden because of information overload. A user then might need assistance while search-
ing the World Wide Web in order to �nd the information he is looking for. Index-based
search engines were �rst used to solve this problem and continue to be a good approach.
Clever indexing, on the other hand, is an enormous problem in for a huge amount of fre-
quently changing data. No search engine has achieved this goal so far. The best indices
today, cover up to 40 percent of documents. Output of scripts and database-generated
pages are not indexed at all.
The next step in the evolution of tools assisting the user on his way of �nding information
on the internet were metasearch engines. The idea is to simply request several search en-
gines and collect their results. Still, not all the available information is covered2 and the
links provided may not work, eventhough the chances of �nding the desired information
were increased.
Filtering, sorting and compressing the resulting information still is time consuming. Ded-
icated services took place in the process of �nding information. Its goal is to provide one
speci�c piece of information, e.g. by looking up the email address of a person.
A higher level of assistance for the user is provided by so-called softbots.
Being intelligent agents with learning capabilities, softbots can autonomously transform
transactions in the way intended by the user. Their aim is to facilitate the users access
to the internet3. With a manyfold of techniques, it is now possible to evaluate given
information, to compress it, combine it with other information and present it on virtual
webpages. Those pages are created on the
y by the softbot during its research aiming
only to answer exactly the users question. Animated characters can be used to present
the result (presentation agent, see [ARM98]) or to communicate with the user in order
to narrow down his request. The evolution and improvement of softbots will change the
appearance of the web over the next few years and it will make it accessible to an even
larger group.

1.2 The Personal Picture Finder

Personal internet assistants (PIA) are programs with the following features:

� Knowledge about the internet and the WWW.

� Ability to recognize what the user wants to know, by interpreting his requests in
the right way and transforming them into the appropriate queries to the di�erent
information services and document sources.

� Capability to process information (information processors) for collecting, �ltering,
combining and presenting search results.

2Talking about the percentage of information covered one should keep in mind that a full coverage is
not necessarily desirable. Several human maintained search engines explicitly exclude for example pages
containing racistic material.

3It is not necessary to restrict the softbots domain to the WWW only. Other internet services can be
used as well for acquiring information, for example ftp or gopher, or even a simple �nger demon.

1.2 The Personal Picture Finder 9

We call these PIA netbots, an acronym for internet robots4. Like robots, netbots perform
work for and in interaction with their user. The di�erence is the restriction of the netbots'
domain to the internet and of his work to be solely intellectual and not physical. The
purpose of a softbot is to access internet services in commission of the user, to use and
to interact with those services. According to the "Less is more"{philosophy the netbot
looks up the user-speci�c relevant information only.
In this thesis I will describe a new netbot called Personal Picture Finder [EMW99].
The Personal Picture Finder was developed within the project PAN5 at the German Re-
search Center for Arti�cial Intelligence, DFKI GmbH. Its objective is to look up portrait
pictures of persons on the web. Given the name of a person, the Personal Picture Finder
consults relevant information sources, extracts and analyzes pictures from webpages, to
then present the resulting pictures with a reference to the pages containing them. The
Personal Picture Finder is available online (http://�nder.dfki.de:7000/). The user has
the possibility to give a feedback to the results and thus improving the performance of
the Personal Picture Finder.
As a personal internet assistant the Personal Picture Finder can support journalists in
the search of pictures of prominent people on the internet. It is checking out the whole
internet for photos of the requested person, and eventually presents them in a suitable
way.
Also, for an illustrator wanting to put the photo of a prominent person into a graphic,
the Personal Picture Finder is a time and labor saving tool. An interesting application of
the Personal Picture Finder is �nding copyright violations of information providers. The
copyright-holder of an image simply checks if the photo occurs somewhere else without
his permission.
For private or business use it might be useful when preparing a meeting (conference, pick-
ing up somebody at the airport, etc.) with a person one can not identify visually.
Fans or fanclubs can use the Personal Picture Finder in order to �nd pictures of their
idol and maybe collect them on CD-ROMs or in fanzines.
Tracing criminals is another buzzword in this context. It is obvious that criminals will
not put a private homepage on the WWW, but one might �nd pictures of a larger group
of people in another context containing the person one is looking for. This will surely
work only if the name is mentioned in a textual annotation of picture. Another source
for pictures of a criminal are the webpages of institutions like the FBI in the US or the
Bundeskriminalamt in Germany. At least on the internet, the international cooperation
and collaboration of police might work.

4The word robot was �rst used in 1921 by the czech writer Karel �Capek in his play "RUR - Rossum's
Universal Robots". Its origin are the czech words robota (compulsory labor) and robotnik (slave).[Kur90]

5PAN is an acronym for Planning Assistant for the Net.

10 1. Introduction

1.3 Problem speci�cation

The speci�cation for this thesis was to describe and implement the Personal Picture
Finder including the following features:

� The Personal Picture Finder provides a WWW service for �nding portrait pictures
of persons which uses existing search engines and information infrastructures pub-
licly available.

� Parallel pull technology is used.6

� The implementation is modular and realized in the Java programming language.

� Communication overhead is avoided by using server side computation (servlets).

� The system includes �lter for graphics �le formats on the web. The decision which
pictures to be presented to the user is based on checking parameters like width,
height, depth and compression of the graphics �le.

� If possible, the HyQL interpreter developed in PAN is integrated in the Personal
Picture Finder system.

� Requests and user feedback are protocolled. This information is stored in a database.

� Using low-level machine learning, the Personal Picture Finder should improve its
graphics �lters by learning from the collected data.

The original problem speci�cation did not include the interface to the Bitmap Information
Tool BIT developed by Jens Haase that turned out to be a useful extension.

1.4 Overview

The rest of this document is organized as follows.
Chapter 2 gives a survey on the State of the Art of implementing internet agents and
search engines, and building intelligent user interfaces. Di�erent kinds of search engines
and agents will be introduced.
In Chapter 3, the underlying technology will be discussed: BIT, a Bitmap Information
Tool currently under development at project AIA7 adds useful information to the analyze
of pictures. The Hypertext Query Language HyQL developed and prototyped in project
PAN is a powerful tool for specifying information sources and information extraction
operations. The programming environment Java used for the implementation of the Per-
sonal Picture Finder o�ers several features that facilitate the development of a softbot. A
primer of the several graphics �le formats is given, and explained why there are so many
di�erent formats to store graphics data in. The graphics �le formats used on the web

6Parallel pull refers to concurrent WWW access and is described in Section 4.1.2.
7AIA is an acronym for Adaptive Communication Assistant for E�ective Infobahn Access.

1.4 Overview 11

are discussed in detail. In order to store previous results, a database is needed and will
be introduced as well. Machine Learning provides an interesting approach to automated
improvement of the agent. Persona, a life-like character, was used for introducing the
user to the Personal Picture Finder in an older implementation.
Chapter 4 provides an in-depth look at the Personal Picture Finder. The mode of op-
eration, the concept of parallel pull, the architecture, and an elegant trick for accessing
a database under di�cult circumstances are explained in detail. The following sections
explain special features like the Mini�nder, and a former release of the Personal Picture
Finder containing Persona. The Personal Picture Finder available to the public was de-
signed to be fast, hence some features could not be added there. Section 4.4 informs about
an experimental version of the Personal Picture Finder. This version is not accessible on-
line and has some interesting new features and interfaces to other systems. Experiments
with Machine Learning is described next. Some statistics try to add a bit more trans-
parency to the average user of the Personal Picture Finder. Some other applications,
which emerged as by-products through the development of the Personal Picture Finder,
are presented in Section 4.7.
At the end of Chapter 4, I compare the Personal Picture Finder with related services.
Chapter 5 summarizes the results, and gives a visionary outlook on features which could
be added in the future.
Due to the object oriented structure of the Java programming language, the Personal
Picture Finder contains a lot of reusable code. Some of the most useful classes are pre-
sented in Appendix A.
Appendix B contains a user manual explaining how to use the Personal Picture Finder,
answering frequently asked questions and giving tips on how to �x occurring problems.
Some general remarks about this document:

1. By using the words he and his when talking about the user, I refer to male and
female users.

2. Throughout this document, I use the name of Alan Turing as example for looking
up pictures on the internet. Of course the Personal Picture Finder can be used for
looking up any person on the internet, and is neither restricted to special names nor
to famous persons.

Chapter 2

State of the Art

This Chapter is about the state of the art in giving the user assistance while browsing
the web. The Personal Picture Finder is a personal internet assistant based on the search
infrastructure provided by search engines. The use of intelligent technologies makes it
a helpful tool for looking up speci�c information on behalf of the user. Technologies
discussed here are search engines, internet agents and intelligent user interfaces. The
distinction of the sections "search engines" and "internet assistants" indicates two di�erent
levels of the quality of service, namely those using intelligent technologies and those simply
looking up information. The line between those two kinds of services is not drawn strict,
boundaries blur and there is no unique de�nition. Some search engines could as well be
described as index search agents and therefore �t in both categories. The objective of this
Chapter is providing a survey on current technologies. There is no claim at all for a �nal
or complete classi�cation.

2.1 Search engines

As soon as the World Wide Web started growing over the level of a few pages of informa-
tion, some guidance for the user became inevitable. In 1994, Jerry Yang and David Filo
published their collection of bookmarks entitled Jerry's Guide To The World Wide Web.
This page was �rst used by some of their friends only, but til the end of the year reached
10000 daily visitors. In the same year, the �rst web catalogue Yahoo! was published. It
simply provided a survey of categories that lead to more speci�c categories, where the
user could simply specify with a few mouse clicks what he is looking for. For example,
looking for information about the soccer world championship, the user chooses the cat-
egory sports, then soccer, then championship and found the desired information. This
technology was su�cient at this time, but could not catch up with the staggering growth
of information provided.
Search engines tried to automate the indexing process. By using spider and crawler, a
huge amount of webpages can be retrieved, classi�ed by keywords and stored in a database.
The user can query this database using a web interface and retrieve the URLs of pages
classi�ed with these keywords. A lot of search engines were developed using this technol-
ogy, and it was a very common opinion, that the information provided basically was the

14 2. State of the Art

same. In 1996, Selberg and Etzioni [SE96] proved the contrary. Search engines di�er in
many ways. Some rate the important keywords by position in the document, some other
evaluate the keywords by the frequency of appearance and some others simply check the
meta-tags at the beginning of a document. Using six search engines in parallel results in
average 3.5 times more URLs than using a single one.
The idea of a metasearch engine is to provide access to many search engines and collect
the results. The advantage for the user is a uniform interface for placing his query and a
lot more of information returned. Furthermore metasearch engines like the Metacrawler1

virtually add features to search engines like search for phrases. If a search engine does
not provide this feature, Metacrawler simply requests it with the phrase as keywords and
then checks the results it gets in return for the requested phrase. If the keywords do
not appear in the desired order, it will not present this URL to the user. Further post
processing on the references like checking if the pages referred to really exist, eliminating
duplicates, and sorting the references is another service provided by metasearch engines.
Despite all these sophisticated services, the user still has to check out manually all the
references he get in order to �nd the speci�c information he is interested in. One approach
for facilitating this task are intelligent internet agents.

2.2 A survey on internet agents

In this section I show which requirements an internet agent should meet. After that I
give a survey on the di�erent kinds of internet agents.
The following characteristics are desirable agent qualities[EW95]:

� Autonomous: an agent is able to take initiative and exercise a non-trivial degree
of control over its own actions:

{ Goal-oriented: an agent accepts high-level requests indicating what a human
wants and is responsible for deciding how and where to satisfy the requests.

{ Collaborative: an agent does not blindly obey commands, but has the ability
to modify requests, ask clari�cation questions, or even refuse to satisfy certain
requests.

{ Flexible: the agents actions are not scripted; it is able to dynamically choose
which actions to invoke, and it what sequence, in response to the state of its
external environment.

� Communicative: the agent is able to engage in complex communication with
other agents, including people, in order to obtain information or enlist their help in
accomplishing its goals.

� Adaptive: the agent automatically customizes itself to the preferences of its user
based on previous experience. The agent automatically adapts to changes in its
environment.

1www.metacrawler.com

2.2 A survey on internet agents 15

� Mobile: an agent is able to transport itself from one machine to another and across
di�erent system architectures and platforms.

Usually, internet agents do not meet all the requirements mentioned above. Mobility, in
particular can hardly be achieved due to security restrictions.
The Personal Picture Finder is autonomous and communicative. It performs his task
only based on the name provided by the user without asking for further instructions but
instead autonomously starts and performs its search. In order to achieve its goals, the
Personal Picture Finder communicates with other information infrastructures available
on the web like search engines and image databases.
The most famous agents in the WWW are index search agents like Lycos2, WebCrawler3

and InfoSeek4. Those agents autonomously browse the WWW and store an index of
words from titles and content of documents. By querying such an agent, the request is
used as a keyword to look up webpages containing this term in a database.
These kinds of agents have a lot of restrictions:

� The WWW cannot be indexed completely. Only a part of the documents is covered.

� Dynamic generated information is not considered. Documents generated by cgi-
scripts are dismissed.

� The query is restricted to words instead of concepts. If one is looking up "Pan
American Freeway", one might miss all pages about "Route 66".

Other members of the family of internet agents are presentation agent, shopbots,
information-gathering agents and search agents:

� Presentation agents generate online presentations adapted to the user pro�le. Fur-
thermore, they guide the user interactively through the presentation [ARM98].

� Shopbots are virtual shopping assistants and represent the narrow combination of
information gathering and electronic commerce.

� Information-gathering agents facilitate the former toilsome way of looking up infor-
mation on the internet. The user roughly tells the agent about the information he
needs and the agent determines and executes the necessary actions to eventually
present it in the desired way. The �rst generation of shopping agents does not o�er
any interaction with the user, but instead is restricted to comparing the price of a
product from di�erent vendors and show the result in the appropriate way. Exam-
ples for this kind of shopbots are Jango5 and the Yahoo-Visa-Shopping-Guide6.
The shopbots of the next generation should be personal internet assistants, they
should know all relevant individual information about the user and be able to per-
form a whole deal autonomously.

2www:lycos:com
3www:webcrawler:com
4www:infoseek:com
5www:jango:com
6shopguide:yahoo:com

16 2. State of the Art

2.3 Intelligent User Interfaces

Modern interface technology has advanced from initial command line interfaces to the
esablished use of direct manipulation or WIMP (windows, icons, menu and pointing)
interfaces in nearly all applications. Additional bene�ts to the user will be provided in
the next generation of interfaces, often called "intelligent interfaces".
Maybury and Wahlster de�ne:

"Intelligent user interfaces are human-machine interfaces that aim to im-
prove the e�ciency, e�ectiveness, and naturalnes of human-machine interac-
tion by representing, reasoning, and acting on models of the user, domain,
task, discourse, and media [MW98]."

The development of intelligent user interfaces is an interdisciplinary area. It includes
human-computer interaction (HCI), ergonomics, cognitive science, and arti�cial intelli-
gence.
Contemporary research in this �eld mainly includes:

� Multimedia Input Analysis

� Multimedia Presentation Design

� Automated Graphics Design

� Automated Layout

� User and Discourse Modeling [KW89]

� Model-Based Interfaces

� Agent Interfaces

� Evaluation

The development of the Personal Picture Finder took place in the Intelligent User In-
terfaces research department of DFKI and is an examplary use of the research in Agent
Interfaces. An in-depth look at the state of the art in developing intelligent user interfaces
can be found in [MW98].

Chapter 3

Underlying Technology

The Personal Picture Finder relies on basic technologies as well as on experimental work
or current research. In this Chapter, the underlying technology is discussed:

� The Bitmap Information Tool BIT is a current research topic of project AIA. It was
used to add some more information about the pictures in the experimental version
of the Personal Picture Finder.

� HyQL - the Hypertext Query Language is a main research interest of project PAN.
It provides mechanisms for information extraction from HTML documents. For the
public version of the Personal Picture Finder, the prototype of the HyQL interpreter
is not used yet.

� Java is the programming environment used for the implementation of the Personal
Picture Finder.

� Graphics File Formats are the kind of data the Personal Picture Finder is evaluating.

� A database provides the infrastructure for storing collected data.

� The �eld of Machine Learning has some useful approaches for automated �lter
optimization.

� Persona is a presentation agent developed in projects PPP and AIA and was used
in an early version of the Personal Picture Finder as presentation host.

3.1 BIT - Bitmap Information Tool

The Bitmap Information Tool (BIT) [Haa99] is a powerful tool for analyzing graphics
�les. It is currently under development at DFKI GmbH by Jens Haase.
Unfortunately analyzing pictures is a rather time consuming operation. One of the main
purposes of the publicly accessible release of the Personal Picture Finder on the other
hand was looking up pictures on the web fast, so a detailed analyze cannot be used.

18 3. Underlying Technology

Figure 3.1: Bitmap Information Tool BIT

As I will show later on, combining the Personal Picture Finder and BIT is a promising
approach for providing better results to more patient users.
BIT is implemented in C++ and based on the libraries of Image Magick. It provides the
user with a highly con�gurable interface as well as with many options for the command
line version.
Given one or several graphics �les, BIT reads the data and performs up to three analyzing
levels:

1. Dimension / Metadata:
The dimension information includes besides parameters like horizontal and vertical
dimension and resolution and color depth some interesting features like:

� Detection of animation

� Classi�cation of the picture in categories like button, headline, icon, separator
or border. The classi�cation includes positive and negative information (what
the picture is and what the picture is not respectively).

2. Histogram:
The histogram counts the colors of a picture and performs statistic testing on light-
ness, saturation, and the amount of colors used compared with the maximal possible
colors in the speci�c graphics �le format.
The histogram information requires a more detailed analysis and may take up to

3.2 HyQL - A Hypertext Query Language 19

two minutes depending on picture size and computational power.
Keyword classi�cation on this level includes positive and negative detection of:

� Blackwhite:
The picture has only two colors: black and white.

� Bright:
The amount of bright pixel in the picture exceeds by far the amount of dark
pixel.

� Dark:
The amount of dark pixel in the picture exceeds by far the amount of bright
pixel.

� Grayscale:
The picture has only gray colored pixel.

� Painting:
The picture uses only a few of the possible colors.

� Unicolor:
The majority of pixel in the picture are unicolored pixel.

3. Partition:
This �nal test divides the picture in squares and counts the colors in them. A
statistical evaluation of speci�c regions of the picture based on empirical testing
provides a high level keyword classi�cation. The result of this �lter states if the
picture is or is not of the following kind:

� Plant

� Green

� Sky

� Water

� Outside

� Inside

� Room

� Snow

� Beach

� Sunset

If the classi�cation is ambiguous, unde�ned is returned as result.

As an output, the Bitmap Information Tool generates a summary of the conclusions drawn
on each level of analysis.
Other features will be added on soon and described in detail in the original speci�cation.

20 3. Underlying Technology

planning knowledge
user preferences

 * annotations
WWW sites

Trainer
Info Extraction

 * HyQL scripts

domain ontology
requests

training

results

specifications

info requests info

info requests info or script

PBD dialogue

HyQL script/update

preferences/
heuristics

Info BrokerBrowser

ITA

site info/update

domain descriptions/
views

Figure 3.2: TriAs architecture developed in PAN

3.2 HyQL - A Hypertext Query Language

The World Wide Web contains a huge amount of data easily accessible for everybody.
Almost any information can be found. Due to the lack of structure this turned out to be
a double-edged sword. Finding a speci�c information without any assistance at all is next
to impossible. Access-mechanisms as well as a language to specify higher level requests
than just simple keyword search become inevitable. An SQL-style query language seems
to be the appropriate way. There have been several approaches concerned with WWW
query languages.
In 1998 Bauer and Dengler presented TrIAs, an approach for cooperative problem solving
using Trainable Information Assistants [BD98] as a research result of project PAN. A
robust prototype interpreter evolved out of this theoretical work and now is successfully
used in several applications. Since most search engines frequently change the layout of
their output, the architecture described in this section seems to be a useful extension for
the Personal Picture Finder.
In the following, after shortly introducing project PAN and its goals I give a survey
of the TrIAs architecture and the underlying technology, namely the Programming by
Demonstration paradigm (PbD) and the Hypertext Query Language [Den99b] HyQL. A
much more detailed introduction can be found in [BD99b].

The name of project PAN stands for Planning Assistants for the Net. It is part of the
IUI1 research department of the DFKI GmbH. In the tradition of the ancestor projects
PHI2 and RAP3 research about planning is a main objective. A new aspect is the usage of
the WWW as domain. The goal of project PAN is the development of plan-based infor-
mation assistants for the internet. Main purposes are generation and execution of plans

1IUI is an acronym for Intelligent User Interfaces.
2PHI is an acronym for Planbasierte Hilfesysteme (plan-based assistance systems).
3RAP is an acronym for Reasoning About Plans.

3.2 HyQL - A Hypertext Query Language 21

in dynamic environments, handling of the underlying domain model and the implemen-
tation of a cooperative and adaptive behaviour of the assistant. The latest development
of PAN is a tool for constructing and developing information assistants for personal use.
Furthermore these assistants can be trained for the extraction of relevant information
(InfoBean-concept; [BD99a]).
One crucial point is the simpli�ed adaptation of these assistants to changing structures

Figure 3.3: Regional weather forecast page

and new domains. This can be achieved using the TrIAs technology described below.
Research in PAN focuses on:

� planning and plan execution in dynamic environments

22 3. Underlying Technology

� systematic domain model development

� user modeling for Net applications

� learning interface agents

The Personal Picture Finder is an exemplary prototype of an interface agent.
Software agents are intended to autonomously perform certain tasks on behalf of their
users. In a highly dynamic domain like the Net this can hardly be achieved, since the
agent's competence might not be su�cient to produce the desired outcome. Instead of
just giving up and leaving the whole task to the user, the Trainable Information Assistants
(TrIAs) approach identi�es the problems of the autonomous agent and tries to improve
its capabilities in dialog with the user. The user here is expected to be able and willing
to help, since he is interested in obtaining a useful response from the system, even at the
cost of having to intervene from time to time.
In the following I describe the TrIAs architecture using the example scenario ITA4. The
architecture of this example is shown in Figure 3.2. Its three core components are the
application module (here: the trip planner ITA), the Information Broker and the Infor-
mation Extraction Trainer (IET).
Whenever the trip planner has an information gap that cannot be �lled using current
domain knowledge it requests the Information Broker for appropriate information. The
Information Broker maintains a database containing speci�cations of the information
sources to be used along with operational descriptions how to extract information from
these sources. These descriptions are represented by HyQL scripts. Executing these
scripts, the Information Broker obtains and forwards the information requested by the
application module.
The Information Broker's search for information however can fail from time to time due
to one of the following problems occurring:

� The site containing the information is not available.

� The structure of the document changed and therefore cannot be understood by the
HyQL script.

The �rst case is no real challenge. The Information Broker can handle this situation
by simply accessing the desired information from an alternative source. The later case
is much more interesting. The script producing the failure is passed to the Information
Extraction Trainer that starts a Programming by Demonstration (PbD) dialog with the
user.
The objective of the PbD dialog is the generation of a working script for a modi�ed docu-
ment or at least the identi�cation of the relevant information for the application module.
The former enables the system to deal successfully with this website and the later avoids
a failure of the current process. In the TrIAs architecture described above speci�cation of
information sources including operational extracting instructions are stored in scripts im-
plemented in the Hypertext Qyery Language HyQL. In the HyQL approach, the WWW

4ITA is an acronym for Internet Travel Arrangement Assistant.

3.2 HyQL - A Hypertext Query Language 23

is considered to be a computable dynamic graph structure. The nodes can be static doc-
uments or dynamic generated ones, like database queries or the output of a CGI script or
application. Links are the edges in this graph.
The documents are represented as tree structures based on the opening and closing HTML-
tags.
HyQL and PbD do not intend the construction of a completely autonomous agent (which
can hardly be achieved on the WWW), but it can help the user a lot to deal with the
dynamically changing environment and will|by interaction|increase its functionality.
Features of the HyQL language are:

� detailed speci�cation of WWW navigation and programmed search,

� detailed and
exible access to document structure and content,

�
exible referencing and selection scheme to reach robustness of queries against layout
changes of documents,

� speci�cation and use of user-de�ned abstractions (macros),

� homogenous language de�nition ful�lling the needs of naive as well as expert users.

Figure 3.4: Result returned from HyQL sample script

The following example gives an impression of HyQL and its possibilities.
Example:

select valid_html(root,descendant(1,body)(4,table)) from

select content from document d1 such that

document d in http://weather.yahoo.com/regional/US/TX.html

document d -> document d1

d1.url = select root,descendant(1,a)href from

{ select info i1 := root,descendant(all,a)

from document d

where i1 match "El Paso" }

24 3. Underlying Technology

The objective of this script is to obtain the weather forecast for a city in Texas by following
a link from a regional weather forecast survey (see Figure 3.3.).
The script selects valid html from a speci�ed position of a document speci�ed later on.
Valid html means, that the piece of html code extracted will be "�xed" in terms of adding
missing closing tags in order to obtain a tree structure. Besides that, a full html page is
created out of it by adding the document's original head tag, and by setting the document
base to the page's original source5.
The position in the document is described as (root,descendant(1,body)(4,table)), meaning
from the document root the �rst subtree labeled body is selected and there the fourth
subtree labeled table. Or short: The fourth table in the document body.
The desription of the document to obtain this information from is more di�cult and shows
some of the possibilities of HyQL.
The second select statement says that the desired document is document d1, and it can
be obtained by downloading another document d given by an URL. The constraints to be
solved then are:

� There is a local link from document d to document d1. Local links are denoted by
� >, global links by =>. Link chains or alternative paths can be denoted as well
in HyQL [Den99a].

� The URL of document d1 can be obtained from a href in the �rst a-tag that matches
the keyword El Paso.

The output produced by the sample script is shown in Figure 3.4. Some more sample
scripts for obtaining information from search engines will be shown later.

3.3 Java

In this section I describe Java, the programming environment used for implementing the
Personal Picture Finder. It provides the full functionality of a modern, object-oriented
programming language like C++, but is reduced to a simple and easy to handle struc-
ture. It is platform independent and provides the user with a lot of useful, prede�ned
libraries. Java was developed at Sun Microsystems in 1991. It is described as "simple,
object-oriented, statically typed, compiled, architecture neutral, multi-threaded, garbage
collected, robust, secure, and extensible." [GJS96]:

� Simple. Java's developers deliberately left out features like implicit type casting,
operator overloading, header �les, or multiple inheritance.

� Object-oriented. Just like C++, Java uses classes to organize code into logical
modules. At runtime, a program creates objects from the classes. Java classes can
inherit from other classes, but multiple inheritance is not allowed.

5By setting the code base the browser is able to include pictures and links from the original document.

3.3 Java 25

� Statically typed. All objects used in a program must be declared before they are
used.

� Compiled. A Java program has to be compiled to a so called byte-code before
running it. This byte-code can be interpreted on any platform using a Java Virtual
Machine that translates the byte code into machine language commands.

� Multi-threaded. Java programs can contain multiple threads of execution, which
enables programs to handle several tasks concurrently. The Personal Picture Finder
takes advantage of this feature by downloading several webpages in parallel and at
the same time analyzing graphics data in parallel too.

� Garbage collected. Java programs do their own garbage collection.

� Robust. The interpreter checks all system access. When an error is discovered, the
program throws an exception that can be captured and managed by the program.
It is not possible to crash any serious operating system with a Java program.

� Secure. Since Java does not support pointers, it is not possible to access any part
of a system without authorization.

� Extensible. Java programs support native methods, which are functions written
in another language, usually C++.

� Well-understood. The Java language is based upon technology that's been devel-
oped over many years.

The focus in the following is on features of Java used for the development of the Personal
Picture Finder.

3.3.1 Applets - the java.applet package

Applets are probably the most famous Java programs. An applet is a Java program
running on the Virtual Machine (VM) of a web browser. When downloading a page
containing an applet, the browser also downloads the applet code and executes it on
the local computer. Applets are used for creating special e�ects like animation or little
games on a webpage. Applets do not have the full functionality of Java programs. A
SecurityManager-object controls the execution. Depending on the browser, the user has
several possibilities to change the SecurityManager's restrictions. Typically the main
restrictions for a program executed in a browser are:

� No access to the local �le system is allowed.

� Network connections are restricted to connecting the server providing the applet.

It is possible to sign an applet so that the user can verify who wrote it and that it was
not modi�ed at download time. The user can decide which developers he trusts in and
give their applets more rights.
In the Personal Picture Finder an applet is used for connecting back to the server, dis-
playing information and building a virtual webpage.

26 3. Underlying Technology

Application Applet signed Applet Servlet

stand alone yes no no no
context none Browser Browser Server
GUI possible yes yes no
Networking yes restricted yes yes
�le access yes no yes yes
Computer server client client server

Table 3.1: Features of Java programs.

3.3.2 Servlets - the javax.http package

A servlet is a server side application using the JVM6 of a webserver. It can be accessed
via a http request and return some output like a CGI7-script. Unlike an applet running
on client side, the servlet has no default security restrictions. It can access the local �le
system, connect to every location on the web, execute programs and access databases.
Using the SecurityManger, the user could of course add restrictions. The servlet is running
in an environment controlled by the developer, who can always install the latest JDK8

release. This is obviously not possible for an applet running on client side.
Servlets are used in several parts of the Personal Picture Finder architecture. Details will
be discussed later.

3.3.3 JDBC - the java.sql package

The java.sql package in the Java API is usually referred to as the JDBC API9. It was
developed as a separate package from JDK 1.02 and is an integral part of JDK release
1.1.
The objective of JDBC is providing database connectivity to Java programs. That does
not sound too spectacular, but in connection with other Java features provides a powerful
tool:

� Database access can be provided over the net.

� Tools accessing and manipulating a database can be implemented platform inde-
pendent.

� Webpages can be created on the
y using information from a database.

� When replacing a database with another, one simply needs to load another driver
in the Java program but not reimplement the whole software.

In the Personal Picture Finder JDBC is used to store information about graphics data
found on the net.

6JVM is an acronym of Java Virtual Machine.
7CGI stands for Common Gateway Interface.
8JDK is the Java Developers Kit.
9JDBC stands for Java Database Connectivity [HCF97].

3.4 Graphics File Formats 27

3.3.4 Networking - the java.net package

When implementing an internet agent it is crucial to have a powerful programming lan-
guage in terms of which networking capabilities it o�ers. The java.net package provides a
powerful infrastructure for networking [Fla97]. It provides two di�erent kinds of interpro-
cess communication, the simple datagram socket and the more complex stream socket.
The stream socket (or connected socket) is a socket over which data can be transmitted
continuously10. Continuous activity distinguishes the stream socket from the datagram
socket that is used for one-time communication. Stream sockets can be used for TCP/IP
connections. Java provides streamed socket programming primarily through two classes:
Socket and ServerSocket. The di�erence between these classes is that the later can be
used for implementing a Server while the former is suitable for clients only.
On a higher level, Java provides the classes URL, URLConnection and HttpURLConnec-
tion representing the Uniform Resource Locator, the connection to a Uniform Resource
Locator and the Hypertext Transfer Protocol respectively. Using these classes makes it
easy to access and manipulate webpages.
The Personal Picture Finder uses the HTTP protocol for accessing webpages and for the
initial communication between applet and servlet. The communication between applet
and a stand alone application controlling the applet is established via TCP/IP over stream
sockets.

3.4 Graphics File Formats

"File formats can be complex. Of course they never seem complex until you're
actually trying to implement one in software." (J. D. Murray, [Mv96])

In order to decide, which pictures are to be presented to the user, the Personal Picture
Finder has to analyze the pictures it found. This section is about the �les pictures are
stored in, about graphics �le formats [KL95].

3.4.1 General remarks

This section provides some general remarks about graphics �le formats, the way graphics
are stored in �les, why there are so many di�erent formats and how to choose the appro-
priate format for an application. Later on, the graphics �le formats used on the web are
discussed.

3.4.1.1 Basics

A graphics �le format (GFF) is the format in which data describing an image is stored in
a �le. graphics �le format have come about from the need to store, organize, and retrieve
graphics data in an e�cient and logical way ([Mv96]). Depending on the application using

10Continuously does not necessarily mean that data are send all the time but that the socket itself is
active and ready for communication all the time.

28 3. Underlying Technology

an graphics �le format this "e�cient and logical way" can vary signi�cantly. Choosing
the right graphics �le format for an application raises a lot of questions:

� Should the way of storing the graphics data be e�cient in terms of disk space or
download time? Or should it rather be fast and easy to be displayed?

� Is scalabilty necessary?

� How many colors are needed?

� Is the graphics �le format used for displaying a picture on the screen or for printing
it out?

� Are special e�ects like interlacing, animation or transparency necessary?

� Is compatibility to other applications necessary?

� How much quality is needed?

� Or, subsuming all the above questions: What do I need the graphics �le format for?

A wide variety of graphics �le formats evolved out of these questions over the last decades.
After shortly explaining the traditional main classi�cation of graphics data, I describe the
graphics data one has to deal with on the internet, namely the JPEG and GIF formats and
the PNG format which is anticipated to become the future standard format for graphics
on the internet.

3.4.1.2 On Vector formats versus Bitmap formats

Traditionally, graphics �le formats are divided into vector formats and bitmap formats. A
vector format is a format containing vector data. Vector data refers to what one usually
associates with the mathematical or scienti�c term vector: the data gets stored as a
description of lines, polygons or curves along with additional information like thickness
and color of lines. Vector data are very convenient if one needs to scale graphics or
print them on a plotter. Using vector data is not very useful if one wants to rapidly
display a graphic on the screen, since rendering vector data is a time consuming operation.
Bitmap data, on the other hand, suits this purpose perfectly. The term "bitmap" is quite
confusing in this context. In older usage, it really referred to an array of bits representing
a monochrome picture. Its meaning has changed over the past years and the usage of this
term now includes, besides arrays of bits, also arrays of pixels or integers (to represent a
color from a given color palette), and even compressed formats that can be uncompressed
to obtain an array of pixels.

3.4.2 Graphics File Formats on the WWW

By looking at the classi�cation of graphics �le formats it is obvious that compressed
bitmap formats perfectly meet the requirements of the WWW, which are: fast download

3
.4

G
r
a
p
h
ic
s
F
ile

F
o
r
m
a
ts

2
9

Header
Logical Screen Descriptor

Global Color Table

Local Image Descriptor
Local Color Table

Image Data

Local Image Descriptor
Local Color Table

Image Data

Local Image Descriptor
Local Color Table

Image Data

Trailer

...

H
ea

d
e

r
Im

ag
e 1

Im
ag

e 2
Im

ag
e n

F
igu

re
3.5:

S
tru

ctu
re

of
a
G
IF
87a

(p
rov

id
ed

b
y
sm

all
�
les

d
u
e
to

com
p
ression

)
an
d
fast

an
d
u
n
scaled

d
isp

lay
in
g.

T
h
e
com

-
m
on
ly
grap

h
ics

�
le
form

at
u
sed

on
th
e
W
W
W

1
1
are

G
IF
,
JP

E
G
an
d
P
N
G
as

a
stan

d
ard

to
b
e
1
2.
In

th
is
section

I
d
escrib

e
th
ese

grap
h
ics

�
le
form

at.
A
Java

ap
p
lication

an
aly

zin
g

th
ese

form
ats

can
b
e
fou

n
d
in

A
p
p
en
d
ix

A
.2.4.

A
d
escrip

tion
of
all

th
ose

form
ats

can
b
e

fou
n
d
in

[M
v
96]

an
d
[B
or97].

F
u
rth

er
in
form

ation
ab
ou
t
sp
eci�

c
form

ats
w
ill

b
e
q
u
oted

in
th
e
su
b
section

s
b
elow

.
It
tu
rn
ed

ou
t
th
at

th
e
b
est

sp
eci�

cation
for

th
e
form

ats
JP

G
an
d
P
N
G
w
ere

th
e
lib
raries

lib
jp
g.h

an
d
lib
p
n
g.h

resp
ectively.

3
.4
.2
.1

G
r
a
p
h
ic
In
te
r
c
h
a
n
g
e
F
o
r
m
a
t
G
IF

8
7
a

T
h
ere

are
tw
o
rev

ision
s
of
th
e
G
rap

h
ic
In
terch

an
ge

F
orm

at
G
IF
,
w
h
ich

b
ecam

e
very

p
op
-

u
lar

an
d
w
id
ely

d
istrib

u
ted

.
T
h
e
origin

al
rev

ision
w
as

G
IF
87a

,
n
am

ed
after

th
e
year

in
w
h
ich

it
w
as

released
b
y
C
om

p
u
S
erve

In
c.

T
w
o
years

later,
in

1989,
th
e
cu
rren

t
rev

i-
sion

w
ith

en
h
an
ced

cap
ab
ilities

w
as

released
.

In
th
is
su
b
section

I
p
resen

t
G
IF
87a

as

1
1T

h
is
refers

to
th
e
g
ra
p
h
ics

�
le
fo
rm

a
t
in
clu

d
ed

in
a
w
eb
p
a
g
e
u
sin

g
th
e
IM

G
ta
g
.
O
n
e
su
rely

ca
n
p
u
t

a
lin
k
to

a
n
y
�
le
fo
rm

a
t,
in
clu

d
in
g
a
g
ra
p
h
ics

�
le
fo
rm

a
t,
o
n
a
w
eb
p
a
g
e
a
n
d
p
rov

id
e
o
th
er

fo
rm

a
ts

fo
r

30 3. Underlying Technology

Format GIF 87a GIF 89a JPEG PNG

Type Bitmap Bitmap Bitmap Bitmap
Compression LZW LZW JPEG LZ77 variant
Colors 1 to 8 bit 1 to 8 bit Up to 24 bit 1 to 48 bit
Maximum size13 64K x 64K 64K x 64K 64K x 64K 2G x 2G
Multiple Images14 no yes no no
Num. Format Little-endian Little-endian Big-endian Big-endian
Originator CompuServe CompuServe C-Cube Boutell et. al.

Table 3.2: Graphics File Formats on the WWW

described in [Com87]. The GIF-format uses the LZW (Lempel-Ziv-Welch) compression
algorithm. This algorithm is based on the commonly used algorithms LZ77 and LZ7815.
LZW is a general compression algorithm capable of working on almost any type of data.
It is fast in both compressing and decompressing data and therefore suits the needs of an
e�cient storing of graphics data.
Unfortunately the LZW algorithm is not freely available, meaning that every developer
using LZW for compressing or decompressing data has to obtain a license from Com-
puServe and pay a royalty on each copy of their product sold.
The layout of a GIF is (roughly) a header followed by a logical screen descriptor and a
global color table. The image date and a trailer follow that (see Figure 3.5).

3.4.2.2 Graphic Interchange Format GIF 89a

This current version of GIF is similar to the 87a revision, but it contains several additional
blocks of information (see Figure 3.6). These additional information blocks are used for
four so-called Control Extensions, which are:

� Graphics Control Extension: The most popular feature from this extension is the
transparency-option.

� Plain Text Extension: This extension allows human-readable text which is actually
part of the bitmap itself.

� Comment Extension: Also used for additional human-readable text. Unlike the
Plain Text Extension, this text is embedded in the data-stream.

� Application Extension: Additional information is stored here as well, in order to
help the displaying application to properly and fast display the picture.

The format is speci�ed in detail in [Com89].

download or write plugins to display them.
12Some browsers are able to display XBM and XPM as well, but these �les are really rare on the WWW

and most likely will become extinct.
13Image size in pixels.
14Multiple Images per �le possible.
15The compression tools compress, zoo, lha, zip, and arj for example use the LZ77 algorithm.

3
.4

G
r
a
p
h
ic
s
F
ile

F
o
r
m
a
ts

3
1

Header
Logical Screen Descriptor

Global Color Table

Local Image Descriptor
Local Color Table

Image Data

 Comment Extension
Plain Text Extension

Trailer

H
ea

d
e

r
Im

ag
e 1

E
xten

s
io

n

In
fo

rm
a

tio
n

 Comment Extension
Application Extension

Graphic Control Extension

E
xten

s
io

n

In
fo

rm
a

tio
n

F
igu

re
3.6:

S
tru

ctu
re

of
a
G
IF
89a

3
.4
.2
.3

J
P
E
G
F
ile

In
te
r
c
h
a
n
g
e
F
o
r
m
a
t

JP
E
G
F
ile

In
terch

an
ge

F
orm

at
is
a
grap

h
ics

�
le
form

at
b
ased

on
JP

E
G
com

p
ression

.
T
h
e

u
sage

of
th
e
acron

y
m
JP

E
G

1
6
is
a
b
it
con

fu
sin

g,
sin

ce
it
refers

to
a
stan

d
ard

s
organ

ization
,

a
m
eth

o
d
of

�
le
com

p
ression

an
d
som

etim
es

to
th
e
grap

h
ics

�
le
form

at
itself

to
o.

T
h
e
cu
rren

t
rev

ision
of

JP
E
G

is
1.02,

released
b
y
C
-C
u
b
e
M
icrosy

stem
s
in

1992.
F
iles

are
stored

h
ere

as
a
stream

of
b
lo
ck
s,

each
startin

g
w
ith

a
sp
eci�

c
m
arker

to
id
en
tify

its
con

ten
t.

It
d
o
es

n
ot

p
osses

a
form

ally
d
e�
n
ed

h
ead

er,
b
u
t
it
alw

ay
s
starts

w
ith

th
e

b
lo
ck
s
S
O
I
1
7
an
d
A
P
P
0
1
8
w
h
ich

serve
as

a
d
e-facto-h

ead
er.

U
n
fortu

n
ately

th
ese

tw
o

b
lo
ck
s
d
o
n
ot

con
tain

in
form

ation
ab
ou
t
th
e
d
im
en
sion

s
of

th
e
im
age.

T
h
is
in
form

ation
can

b
e
an
yw

here
in

th
e
�
le.

S
in
ce

th
e
p
u
b
lic

version
of

th
e
P
erson

al
P
ictu

re
F
in
der

on
ly

d
ow

n
load

s
th
e
�
rst

400
b
y
tes

of
a
�
le,

th
e
ch
an
ce

of
m
issin

g
th
is
im
p
ortan

t
in
form

ation
is
ab
ou
t
40

p
ercen

t.
N
ew
er

grap
h
ic

to
ols,

u
su
ally

store
th
is
in
form

ation
b
lo
ck

at
th
e

b
egin

n
in
g
of

th
e
�
le,

b
u
t
th
ere

is
still

a
lot

of
old

im
ages

availab
le
on

th
e
in
tern

et.

1
6J
P
E
G
is
a
n
a
cro

n
y
m

fo
r
J
o
in
t
P
h
o
to
g
ra
p
h
ic
E
x
p
erts

G
ro
u
p
.

1
7S
O
I
is
a
n
a
cro

n
y
m

o
f
S
ta
rt
O
f
Im

a
g
e.

1
8A

P
P
0
is
th
e
A
p
p
lica

tio
n
M
a
rk
er

S
eg
m
en
t.

32 3. Underlying Technology

3.4.2.4 Portable Network Graphics PNG

The intention of the implementation of PNG (pronounced "ping") was o�ering an alterna-
tive to CompuServe's GIF19. The main di�erences to the GIF format are enlarged width,
height and depth parameters of the picture as well as the usage of the LZ77 compression
algorithm which is available at no charge.

3.5 The Image Data Base

This section is about the image database. The Personal Picture Finder uses an Oracle
database for storing information about analyzed pictures and the feedback given by the
user.
A database is a collection of information. A simple computer �le is a collection of in-
formation as well. But there are some fundamental di�erences that make the use of a
database especially interesting:

� A database comprises not only data but a plan, or model of the data.

� A database can be a common resource, used concurrently by many people.

The principal di�erence between information collected in a database and information in a
�le is the way the data is organized. While in a �le the information is organized physically
(i.e. certain items precede or follow other items), the contents of a database are organized
according to a data model. A data model is a plan, or a map, that de�nes the units of
data and speci�es how each unit is related to the others.
The data model is designed when the database is created. The units of data are inserted
according to the plan speci�ed in the model. Sometimes the data model is referred to as
schema as well.
Modern databases are usually relational databases, meaning that they are organized ac-
cording to the relational calculus by E.F.Codd. In this calculus all data is presented in
tables comprising rows and columns.
The most common language for accessing and querying a relational database is SQL20.
SQL and the relational model were invented at IBM in the 1970s. The ANSI21-SQL1
standard was de�ned in in 1986 using a core set of SQL features. Beside this core stan-
dard most databases today use slightly di�ering features.
The JDBC API described in [HCF97] provides a powerful tool for accessing databases
using Java programs. A more detailed introduction to databases can be found in [O'N94].

19The uno�cial recursive derivation of the name "PNG" is "PNG's Not GIF".
20SQL is an acronym for Structured Query Language.
21ANSI is an acronym of American National Standard Institute.

3.6 Machine Learning 33

3.6 Machine Learning

In a highly dynamic environment like the internet it is desirable for a personal assistant to
be as independent as possible. The netbot should learn from experience instead of being
instructed over and over again by the user or developer. One approach to reduce human
intervention at the agents work is learning [Mit97]:

De�nition: A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.

Applied on a checkers learning problem one could de�ne:

� Task T: playing checkers

� Performance measure P: percent of games won against opponents

� Training experience E: playing practice games against itself

Machine learning was in
uenced by a lot of scienti�c disciplines, like arti�cial intelligence,
psychology, statistics, philosophy and information theory. It was successfully used over
the last few decades in many applications, like speech recognition, autonomous drivers for
vehicles, recognition of hand writing, playing backgammon at world champion level, etc.
An introduction to the �eld of learning computer systems can be found in [WK91].
In the Personal Picture Finder application, machine learning was used for experiments
on automated �lter optimization. Details will be discussed later on in the next chapter.

3.7 A Life-Like Presentation Agent: Persona

One important approach when building intelligent user interfaces, is the usage of life-like
characters as presentation agents. At DFKI, the character Persona [M�ul99] was developed
in the projects PPP22 and AIA23. Its objective is to lead the user through a multimedia
presentation.
Persona is integrated in a complex presentation system, which generates user-speci�c
adapted presentations. The intention is to give the user a contact person he can consult
when he needs help.
The required features of a presentation agent in a multimedia presentation are:

� hosting the presentation: Like a human host, the agent leads his "guest" through
the presentation. He explains, gives hints, points out important parts, etc. All these
actions have to be scheduled and coordinated. For this purpose, it is of advance for
the agent to have an anthropomorphic appearance.

22PPP is an acronym for Personalized Plan-based Presenter.
23AIA is an acronym for Adaptive Communication Assistant for E�ective Infobahn Access.

34 3. Underlying Technology

Figure 3.7: DFKI Persona

� extensive presentation possibilities: In order to use the presentation agent in a mul-
titude of di�erent applications, he has to o�er a lot presentation possibilities. This
refers to the possibilities of the agent itself, as well as to the possibilities of interac-
tion between agent and other presentation objects.

� application adaptivity: When being integrated in a presentation, the agent needs an
interface, which provides an easy access for the application. Furthermore, the agent
should be easily adapted to application-speci�c requirements.

� reactive behaviour: The presentation agent must be able to adapt to a dynamic
environment.

� interaction with the user: The agent should be able to provide the user with a
possibility to communicate with the system he represents.

In the Personal Picture Finder context, the Persona was used to explain the user interface,
lead the user through the query process and to present the resulting pictures.

Chapter 4

The Personal Picture Finder

This Chapter discusses|as core part of this thesis|the Personal Picture Finder. Sections
4.1 - 4.4 introduce the di�erent versions, two of them are available to the public. Some
comments about my experiments with machine learning and statistical information follow
in Sections 4.5 and 4.6 respectively.
Some other applications emerged as by-products in the development of the Personal
Picture Finder and are presented in Section 4.7.
At the end of this Chapter, the Personal Picture Finder is compared with related work.

4.1 The publicly accessible version

In this Section, the version of Personal Picture Finder available to the public is presented.
The mode of operation, the concept of parallel pull, the architecture, and an elegant trick
for accessing a database under di�cult circumstances are explained in detail.

4.1.1 Mode of operation

The following chapter explains the idea and the mode of operation of the Personal Picture
Finder using an example.
One can imagine the following situation: A journalist is looking for pictures of Alan
Turing. Using the traditional approach he consults a search engine. The result he gets
is a list of webpages associated with the term from the query (here: Alan Turing). This
is where the journalist really starts working now: He has to download all those pages
sequentially in his browser to check them for appropriate pictures. After some minutes of
rather boring work, he might come across this page of Alan Turing (Figure 4.1).
Besides the picture there is a lot of|in this context|uninteresting information: icons,
banner, textual information, etc. All this undesired information slows down the download
process. Furthermore, the journalist only has one picture now and it would be much nicer
for him to have several pictures to choose from. So he has to go ahead checking more
pages.
The strategy just described is obviously time consuming and tiring. The Personal Picture
Finder evolved out of a situation like this: One would like to have an internet agent which

36 4. The Personal Picture Finder

Figure 4.1: A webpage about Alan M. Turing

collects pictures of a person autonomously and fast on the internet given only the �rst
and last name of a person and which presents all the material on one page for the user to
choose from.
This is the exact purpose of the Personal Picture Finder. As shown in 4.2, the user

types the name of a person in a form and gets a collection of several photos of this person
after a few seconds. Additionally, he can click on the photos to see the page where they
were found. Furthermore, the user can leave a feedback for every result, stating whether
it matches his query or not.
During the search, several displays in an applet inform the user about the state of his
query. A clock is counting the seconds elapsed since the search started. Other displays
are:

� Pages: Number of webpages matching the query found so far.

� Pictures: Number of pictures already shown.

� Rejected: Number of rejected pictures.

� Stack: Number of requested, but not yet evaluated pages.

4.1 The publicly accessible version 37

Figure 4.2: Personal Picture Finder - a search result

� Engines: Number of requested search engines which have not yet answered the
query.

The mode of operation of the Personal Picture Finder can be shortly described as follows
(see Figure 4.3): The user enters the name of the desired person, this name is used for
parallel requests to several search engines on the WWW with the purpose of �nding
pages containing the requested name. The Personal Picture Finder then downloads the
resulting pages in parallel. Furthermore, it queries several picture databases. Several
�lters check and sort the results of the database queries and the pictures extracted from
webpages. Icons, drawings and banners are recognized and rejected. Pictures passing the
�lters eventually are gathered in one webpage and presented as result.

4.1.2 Parallel Pull

When manually browsing the internet for information, one ends up with a lot of results or
links from search engines or other information sources. Checking them all out sequentially
can be time consuming. Even for a softbot which processes information much faster, this

38 4. The Personal Picture Finder

Portrait Photo(s)

Netbot: Personal Picture Finder

Parallel Meta-
search of
Webpages for
<Name>

<Name>

Parallel search
in Picture-
Archives and
Homepages

Extraction of
Images

Filtering of
Logos, Graphics,
...

WWW Knowledge Sources

Figure 4.3: Personal Picture Finder - Mode of Operation

is a suboptimal operation mode.
Parallel processing seems to be a good way to avoid this problem. It can be achieved in
two di�erent ways:

� Running several processes concurrently.
This approach has some advantages. It can be achieved in any programming lan-
guage, but by using it one runs into the problem of setting up process communi-
cation based on TCP/IP, a communication overhead and an inacceptable waste of
operating system resources.

� Running several threads in one process.
Fortunately the Java programming language provides this feature, which makes the
program elegant and e�cient. Two problems occur in this approach:

{ Making sure every thread is destroyed when terminating the application: this
is important, especially when running the application on server-side, since the
Java Virtual Machine will not shut down until the server is restarted. Accu-
mulating unused threads over a few hours or over a week will eventually kill
the whole server.

{ The operating system limits the number of threads of a process. E.g. on a
UNIX-platform this restriction can be set in /etc/system, appearing there as
number of �le descriptors. The default value on a Solaris platform is 64, for
the Personal Picture Finder the value was set to 256. It is not advisable to use

4.1 The publicly accessible version 39

a higher value. (Other processes on this machine would grow as well which is
not desirable for the performance.)

4.1.3 The Architecture of the System

W

W

W

Personal Picture Finder

Parallel

Pull

Engine

Request

Results

Request

Handler

Handler

Handler

Search

Page

Interface

DataBase

DataBase

Learning

Algorithm

Picture
Analyzer

Filter

Figure 4.4: Architecture of the Personal Picture Finder

The previously described mode of operation will now be examined more detailed. Some
additional features of the system are presented. Figure 4.4 shows a schematic representa-
tion of the system.
The Personal Picture Finder consists of the following modules:

� Request Handler

� Search Handler

� Page Handler

� Parallel Pull Engine

� Picture Analyzer

� DataBase interface

40 4. The Personal Picture Finder

The request handler is concerned with the user's request by delegating and scheduling
tasks and collecting and forwarding intermediate results. When the user �nishes his re-
quest, the request handler takes care of the proper termination of all running threads.
This provides stable behaviour of the system even under a lot of requests or simultaneous
requests.
The request handler delegates tasks to search handler, page handler and picture analyzer.
The search handler creates the appropriate query to the requested search engines out of
the data given by the user query and sends it to the Parallel Pull Engine. The Parallel
Pull Engine1 is an essential module of the Personal Picture Finder. It simultaneously
schedules and performs request with the objective of not having too many concurrent
threads at one time.
As soon as HTML-pages are available from the Parallel Pull Engine, the search handler
extracts essential information, which is either URLs of webpages associated with the re-
quest or|when requesting picture databases|the URLs of pictures.
Using the Parallel Pull Engine the page handler requests those webpages of which it ob-
tained addresses from the request handler and it extracts the locations of pictures. The
URLs of the pictures are passed on to the request handler which forwards it to the picture
analyzer.
Using the header information of the graphic �les and knowledge about its origin, the
picture analyzer decides which pictures are to be presented to the user and which are
not. The current version of the Personal Picture Finder uses the name of the picture and
picture-speci�c information only to make this decision. Former versions also checked if
the page where the picture came from contained the requested name. Due to re�nement of
the queries this is not necessary anymore. Picture information considered are parameters
like size, format, compression and color depth.
The span of attention of the average WWW user is rather short. Therefore, a main im-
plementation goal of the public version of Personal Picture Finder was speed. Expensive
picture analyses are too slow for this purpose. The heuristics used so far provide good
results. The �lters reject:

� Icons: Icons can be easily recognized due to their size. Less than 64 pixels in height
or width indicate that a picture is not a portrait, at least not the kind one wants to
have as a result when searching for photos of a person.

� Banner: Their speci�c format makes it easy to detect banners. A banners width is
at least twice its height.

� Drawings: Unlike scanned photos or pictures from a digital camera, drawings usually
have a low color depth. We reject pictures with less then 5 bits in depth.

� Thumbnails and Previews: The product of height, width and depth indicates the
size of the picture as uncompressed bitmap. By comparing this to the actual size
of the �le, assumptions about the quality of an image can be made. Checking the

1The functionality of a Parallel Pull Engine will be discussed in detail later on using the Multi-
HttpServer example [End99].

4.1 The publicly accessible version 41

compression works good for pictures in GIF or PNG format, but unfortunately not
for JPEG. Even highly compressed JPEGs can look very good.2

In order to save time and avoid unnecessary downloads, data which has been already
evaluated gets stored. Java provides the JDBC3-interface, which is a comfortable tool for
accessing databases.
In addition to the completely in Java implemented main Personal Picture Finder architec-
ture, the system contains two other components. One of them is the DataBase, accessed
via the JDBC-interface. It provides a fast, e�cient and robust possibility of dealing with
a huge amount of data. This could have not been achieved by using Java only, at least
not with an appropriate amount of work and additional code. The other component is a
learning algorithm whose purpose is to improve the �lters of the picture analyzer. This
algorithm works o�ine. Attempts to use machine learning techniques are described in
chapter 4.5.
Stability is a major concern in the design of an internet agent. Good performance under
a lot of simultaneous requests should be guaranteed. Design decisions of the Personal
Picture Finder are based on the following considerations:

1. The agent should, as much as possible, be independent from browser, platform and
operating system.

2. Client-side computations should be minimized. Also the data
ow from the server
to the browser should be minimal.

3. Access to the WWW should be provided without preparations on client-side. Signed
applets, plugins and changes of the browsers security restrictions should be avoided.

4. Problems occurring in one request should not have any impact on concurrent or
later requests.

The data
ow is shown in Figure 4.5.
The user's request entered in the HTML-form is passed by a JavaScript method to the
applet. The applet accesses a servlet via http request. The servlet starts a Personal
Picture Finder application and returns the number of a TCP/IP-port to an interface with
this application. The applet opens a connection to this port and reads data from it. The
information obtained here is evaluated and visualized by the applet. It either contains
commands for updating the user interface or displaying a picture. In the later case, the
applet calls a JavaScript function, by generating and writing the required HTML-code
to the output-frame. The user can terminate this process at any time using the applet's
STOP-button. This architecture is robust even under high load and is independent from
platform, operating system, and browser4. Problems occur when the user is sitting behind
a �rewall not allowing a TCP/IP-connection.

2The JPEG-compression �lters information which is invisible for the human eye. The �le loses a lot
of information but still looks the same to the human regarder.

3JDBC stands for Java Database Connectivity. It is not an acronym.
4Browser refers here to newer versions of popular browsers. Older browser revisions may not apply.

42 4. The Personal Picture Finder

Browser

Java
Applet

Button

HTML-Frame HTML-Frame

HTML-
form

Dynamic
generated

HTML-
code

Client Server

Java application:
Personal Picture Finder

Oracle DataBase

Java Webserver

HTTP

request

portnumber

JDBC

invokes

TCP/IP

Java-
script

Java-
script

Servlet

Figure 4.5: Data
ow in the Personal Picture Finder

4.1.4 User Feedback and Database Access

In order to store data about previously found and evaluated pictures as well as feedback
from the user, the Personal Picture Finder uses a database. This database can be ac-
cessed on serverside using JDBC, a database interface for Java developers.
When obtaining a query, the Personal Picture Finder requests a servlet with the parame-
ters of the query. The servlet consults the database and generates a �le, similar to log�les
used in an older implementation.
Every picture is represented in this �le as:

[#]<first name>,<last name>,<picture URL>,<page URL>[,<feedback>]

The optional hashmark (#) at the begin of a line indicates, that this picture should not be
presented to the user again, either because of application of �lters, or because of negative
feedback.
The lines are sorted by user feedback, pictures with best feedback �rst.
Since the main application of the Personal Picture Finder is executed on serverside,
storing data about new pictures can be done easily as well.
Problems occur, when providing the user with the possibility to give feedback about
pictures. This mechanism should hold the following conditions:

� The user gives his feedback on clientside in a dynamic generated HTML page. The
HTML page is not necessarily downloaded (or rather: generated) completely.

� The user feedback has to be entered on serverside in a database.

� The user should be provided with a fast visible feedback that his opinion has been
noted.

4.1 The publicly accessible version 43

� The current page should not be reloaded. As a matter of fact it cannot be reloaded,
since most browsers do not cache dynamically generated HTML code.

� Multiple feedback should be ignored.

� The user should not be annoyed with additional windows opening etc.

The solution that holds all those conditions is a bit tricky and should be clari�ed using
an example.
The Javascript functions generating the HTML page with the results keep track of the
number of pictures displayed using a counter. This counter is necessary in order to gen-
erate a unique identi�er for the picture.
As example, I assume the picture http://www.a-ten.com/alz/tur1.gif from page
http://www.a-ten.com/alz/aturing.htm is the third picture to be displayed as result.
The HTML code generated to display this picture now is:

<table>

<tr valign=top>

<td>

<a href=http://www.a-ten.com/alz/aturing.htm

target=new>

<img src=http://www.a-ten.com/alz/tur1.gif

ALT=http://www.a-ten.com/alz/aturing.htm>

</td>

<td>

My comment:<p>

<a href="javascript:void(0);"

onMouseOver="self.status='This picture matches my query';

return true;"

onMouseOut="self.status='';

return true;"

onclick="window.document.good3.src=

'http://.../vote?pic=http://.../tur1.gif&vote=1';

return false;">

<a href=\"javascript:void(0);\"

onMouseOver="self.status='This picture does not match my query';

return true;"

onMouseOut="self.status='';

return true;"

onClick="window.document.bad3.src=

'http://.../vote?pic=http://.../tur1.gif&vote=-1';

return false;">

</td>

</tr>

44 4. The Personal Picture Finder

</table>

Figure 4.6: The mini�nder

This HTML code generates a table with one row and two columns. The left column
contains the picture to be displayed, along with a link to its original source and the alt-
tag giving the name of the page where the picture came from as additional information
(for example when moving the mouse over the picture). In the right column, the icons
for positive and negative feedback are loaded (an empty checkbox with a thumbs up or
thumbs down icon respectively). The problem now is, that the only obvious way to send
the feedback the user gives by clicking on one of these items is to make a http-request to a
cgi-script, e.g. a servlet, which connects and updates the database. Every http-request on
the other hand returns a result. If no result is returned, the browser at least gives an error
message like "document contains no data!". There is no way of making a http-request in
HTML and to ignore the returned answer. In the worst case, the browser tries to load
the non-existent answer in the current frame, which simply clears the frame and destroys
the current result page. As mentioned before, this page is not cached and hence lost.

4.2 The Mini�nder 45

If the answer can not be ignored, it has to be displayed somewhere. The trick here is to
return an image instead of a HTML or text �le. The servlet is requested when clicking on
a feedback icon, but not using an a-tag but by setting the source of the current image to
the servlet. Using the counter, the icons have a unique id speci�ed in the name-parameter
of the img-tag and hence can be substituted.
The servlet now checks its parameters. If the feedback is positive, it loads the thumbs
up-icon with a checked checkbox, otherwise the thumbs down-icon with checked checkbox
to an array of bytes. The servlet then sets its content type to image/gif, writes the array
of bytes on its output stream,
ushes its output stream, and then makes a connection to
the database to enter the user feedback. The �rst part, returning the image, is very fast,
so the user knows almost immediately his comment has been entered in the database.
The servlet can be called exactly once per session for a speci�c set of parameters. After
that, the picture it returns will be cached, so multiple clicks on the same icon will cause
exactly one entry in the database.
The br-tag at the end of the generated HTML code looks a bit unnecessary at �rst sight,
but is very important, since some browser versions do not start displaying a table or
picture until the end of a line is indicated5.

4.2 The Mini�nder

A special feature of the Personal Picture Finder is the mini�nder. It provides the user
with a small interface, which he can place in a corner of his screen, while browsing the
web as usual (see Figure 4.6). When coming across a name he wants to look up, the user
can query the mini�nder. As soon as matching pictures are found, the mini�nder pops
up a window with results and the possibility for feedback (see Figure 4.7). After checking
out the results, the user can use the clear-button to clear the interface and destroy the
window with the results.
The idea of mini�nder is not new. Metacrawler, for example, o�ers the possibility to
launch a minicrawler with similar functionality. The main functional di�erence between
mini�nder and minicrawler (besides providing di�erent services) is, that the mini�nder
presents the results in a new window, while minicrawler shows a resulting page in an
already existing window.

4.3 Persona

As described in Section 3.7, an important component of intelligent user interfaces are
presentation agents. An early version of the Personal Picture Finder used the Persona
developed in PPP and AIA as presentation agent (see [M�ul99]). Persona explained the
interface for the user, showed him how to use it, made some comments during the search
and eventually presented the resulting pictures to the user (see Figure 3.7).

5This is the reason why the pictures presented as results are displayed in a row and not in a column.
It would simply not work to generate the HTML dynamically without know how many pictures are still
to be expected.

46 4. The Personal Picture Finder

Figure 4.7: Results of mini�nder popping up

Despite all the advantages of having a presentation agents, there were some reasons to
eventually remove Persona from the webpage again:

� Having Persona and the Personal Picture Finder (back then with more client-side
computation than now!) on one page dramatically decreased the performance on
slower machines.

� Special features of Persona, like the highly dynamic creation of presentations or
interactivity could not be used in this context. Persona usually showed the same
introduction and similar comments during the presentation of the pictures, which
made it look like a simple movie clip included in the page.

� The Personal Picture Finder could not give enough interesting information to Per-
sona to create an interesting presentation of the results.

In the next Section, I will describe an experimental version of the Personal Picture Finder,
which collects and analyzes pictures as a background process, and presents the results to
the user after completely �nishing the query. Considering to include Persona in the

4.4 The Experimental Version 47

Figure 4.8: Persona explaining the Personal Picture Finder

Personal Picture Finder, this version would meet the requirements much better than the
one previously used.

4.4 The Experimental Version

Another version of the Personal Picture Finder not available to the public will be de-
scribed in this Section. The main di�erences between this experimental version and the
public Personal Picture Finder are the strictly sequential way of programming and the
presentation of the results after the search, not at runtime. Parallel pull is in its results,
but debugging a parallel program sometimes is next to impossible. Especially when a
multithreaded process hangs, it usually is not obvious, what caused the process to hang.
By presenting the result at the very end of the search, execution time becomes less rel-
evant and the whole process becomes more transparent. It is easier to keep track of the
time needed for every step of the program.
In this Section, I describe the usage of HyQL and a URL generator in the experimental
Personal Picture Finder, and its mode of operation.

48 4. The Personal Picture Finder

4.4.1 HyQL and the Personal Picture Finder

As shown in Section 3.2, the Hypertext Query Language HyQL provides the user with
an easy way of updating internet agents by using the Programming by demonstration
paradigm. This is an enormous advantage in a highly dynamic environment like the
World Wide Web.
In case of the Personal Picture Finder, it is useful to use HyQL for requesting search en-
gines and picture databases. The way those services return their data changes frequently,
which leads to a lack of information and worse results for the user. Using HyQL, an
update can be done fast.
Extracting pictures from webpages on the other hand will always be done in the same
way (unless if HTML language changes dramatically, which is not to be expected), and
therefore does not require the usage of HyQL.
In this section I present the HyQL scripts used for two picture databases and two search
engines.

4.4.1.1 Metacrawler

Metacrawler is a metasearch engine. It requests several search engines, collects, and sorts
the results. The HTML code of the returned page is rather big, usually between 30 and
40 Kilobytes. The information needed form it is up to 20 links matching the query.
The following script extracts the desired information, by �rst extracting all links from the
page and then choosing those not being local links, e.g. links leading to other services
on the same site or to commercial presentations. The results are returned to the user as
links separated by newlines.

{let info i1 := root,descendant(all,a)href

from {select content from

document d1 in

http://search.go2net.com/crawler?general=Alan+Turing&... }

where i1 nomatch "*go2net.com*"},

{select textnl (root,descendant(all)) from i1}

4.4.1.2 Ahoy!

Ahoy! is a search engine specialized in looking up private homepages. The resulting links
are represented not only as links, but as well on the page itself, printed in italic. The
following script simply looks up all italic parts of the text form the returned document
and returns them separated by newlines.

select textnl(

root,descendant(1,body)(alltext,i))

from select content from

document d1 in

http://ahoy.cs.washington.edu:6060/cgi-bin/...

4.4 The Experimental Version 49

4.4.1.3 Lycos

Lycos is a picture database. It provides the user with pictures and links to the source of
the picture, but usually not with a link to the page where the picture was found. The
Personal Picture Finder in this case simply returns the address of Lycos as origin of the
picture.
In the following script, all links from the page returned from the request are checked for
the extensions gif or jpg. The URLs again are returned separated by newlines.

{let info i1 := root,descendant(1,body)(all,a)href

from {select content from

document d1 in

http://www.de.lycos.de/cgi-bin/pursuit?query=Alan+Turing&...}

where i1 match "*jpg" or i1 match "*gif"},

{select textnl (root,descendant(all)) from i1}

4.4.1.4 Altavista

Altavista is another picture database. Unlike Lycos, it returns links to the picture and
to the page where the picture was found. The following script works in two steps. In
the �rst step, all links matching image/ are collected. In the second step, src and href of
these links are extracted and returned, separated by newlines.

{let info i1 := root,descendant(all,a)

from {select content from

document d1 in

http://image.altavista.com/cgi-bin/avncgi?query=%2BAlan%20... }

where root,descendant(2)src applies to i1 matches "*image/*"},

{select textnl(

root,descendant(all,a)href,

root,descendant(all,img)src)

from i1}

Detailed information about the Hypertext Query Language HyQL, along with some more
sample scripts, can be found in [Den99b] and [Den99a].

4.4.2 The URL generator

A URL generator is a function which generates the possible URL of a page using known
information about this page. Based on the email address of a person for example, an
assumption about this persons homepage can be made. Especially after collecting a lot
of email addresses and URLs of persons, patterns how the URL can be retrieved form the
email address can be found.
Example:

The URL of a person with email address <lastname>@dfki.de usually is
http://www.dfki.de/~<lastname>/

The Personal picture Finder has no information about the email address of a person,

50 4. The Personal Picture Finder

which makes the generation of URLs a bit more di�cult, since the generation is based on
the persons �rst and last name only. At least for prominent persons, it works successfully
anyway. The currently used URL generator produces, given the name Alan Turing, the
following URLs:

http://www.alanturing.com/

http://www.alanturing.de/

http://www.alanturing.org/

http://www.alan-turing.com/

http://www.alan-turing.de/

http://www.alan-turing.org/

http://www.turing.com/alan.html

http://www.turing.com/pic/alan.html

http://www.turing.com/pics/alan.html

http://www.turing.com/alan/

http://www.dfki.de/staff/karte.pl?turingalan

Two out of these 11 URLs provide useful information, the rest of these pages simply does
not exist and will be ignored.

4.4.3 Mode of Operation

The span of attention of the average WWW user is rather short, hence the implementa-
tion of the version of Personal Picture Finder available to the public had to return results
fast. This version of the Personal Picture Finder is not available to the public. Results
are not returned until the whole search is �nished. Its objective is a better quality of
service instead of fast results.
From the implementors point of view, this approach avoids a lot of problems, especially
with the correct termination of concurrent threads and the generation of a not-cached
webpage on the
y.
The implementation based on a Bourne shell script, doing all the necessary steps sequen-
tially and eventually gathering the results in one webpage to be presented to the user by
launching a browser.
The execution of the script takes between 15 and 90 minutes, depending on the amount
of collected data to be examined.
Another advantage of the script-form is the simple adaptivity and enhancement with new
features. New search engines or �lters can be added easily, just by adding one or two lines
to the script.
In this section, the script is presented and explained. The line numbers are not part of
the script.
At DFKI, this program is installed on serv-203 and can be used by calling

/home/endres/ppftools/search <firstname> <lastname>

The names should not contain '-' or whitespaces, '+' can be used instead.

4.4 The Experimental Version 51

Figure 4.9: Pictures found while searching for Alan Turing

1 #!/bin/sh

2

3 START=`date`

4

The �rst line calls the Bourne shell as interpreter of this script. After that, the time when
the script execution was started gets stored in variable START.

52 4. The Personal Picture Finder

5 SCRIPT=`/bin/basename $0`

6

7 usage() { echo "usage: $SCRIPT <first name> <last name>"; }

8

9 if [$# -ne 2]; then

10 echo "Personal Picture Finder" 1>&2

11 usage 1>&2

12 exit 1

13 fi

14

Lines 5-14 make sure that the user gets information about the usage of the script in case
he calls it with a wrong number of arguments.

15 PATH=/usr/bin:/bin:/opt/java/bin:/opt/X11/bin:$PATH:/home/haase/pkg/bin

16 BITDB=/tmp/.bit/picdb

17 BITWD=/tmp/.bit

18 CLASSPATH=.:/home/endres/ppftools:/home/endres/lib/java

19 export CLASSPATH

20 PPFTEMP=/tmp/ppf

21

22 umask 000

23

In line 15-23, the necessary pathnames and variables are set. PATH should include the
location of all programs called at runtime, in this case especially Java, netscape, and
bit. BITBD and BITWD are the paths for the database and the working directory of bit
respectively. CLASSPATH points on the necessary Java libraries, here to the ppftools
written for this script and my other libraries containing the Personal Picture Finder API.
A temporary directory for the script execution is set, and the umask is set to 000 to avoid
problems occurring when two users execute the script at the same time using the same
working directory.

24 WORKDIR=$PPFTEMP/$1.$2

25 mkdir -p $WORKDIR

26 mkdir -p $BITWD

27 cd $WORKDIR

28

29 rm -f *

30 touch pages.txt

31 touch pictures.txt

32

The necessary directories are created, the working directory is cleaned from previous �les
and the �les pages.txt and pictures.txt created.

33 ## consult database

34 dbURL="http://finder.dfki.de:7000/generateLogfile?first=$1&last=$2"

35 echo "requesting database"

36 java GetFile $dbURL dbentry.txt

37

4.4 The Experimental Version 53

The content of the database for the requested name is downloaded in the �le dbentry.txt.

Figure 4.10: Rejected pictures

38 ## consult urlgenerator and search engines

39 echo "guessing urls..."

40 java urlgenerator $1 $2 >> pages.txt

54 4. The Personal Picture Finder

41 echo "requesting metacrawler."

42 java metacrawler $1 $2 >> pages.txt

43 echo "requesting ahoy."

44 java ahoy $1 $2 >> pages.txt

45 echo "requesting lycos."

46 java lycos $1 $2 >> pictures.txt

47 echo "requesting altavista."

48 java altavista $1 $2 >> pictures.txt

49 echo "all available data from search engines collected."

50

The URL generator, the search engines, and the picture databases are consulted sequen-
tially. Information about pages is stored in the �le pages.txt (each URL in a separate
line), the information from the picture databases in pictures.txt.

51 ## remove multiple occurrences (pages)

52 echo "sorting pages"

53 sort -u -o pages.txt pages.txt

54

55 ## set new field separator

56 OLD_IFS=$IFS

57 IFS='

58 '

Multiple occurrences of pages are removed using the sort -u command. The �eld separator
is set to newline.

59 ## extract pictures from pages

60 for URL in `cat pages.txt`; do

61 echo "extracting pictures from $URL"

62 java extractPictures $URL >> pictures.txt

63 done

64

For each URL in the �le pages.txt, the Java application extractPictures is called. The
information about pictures extracted from the page is appended at the end of �le pic-
tures.txt.

65 ## check database

66 echo "checking database"

67 java checkDataBase dbentry.txt >> pictures.txt

68

Information about pictures matching the query is appended at the end of �le pictures.txt.

69 ## remove multiple occurrences (pictures)

70 echo "sorting pictures"

71 sort -u -o pictures.txt pictures.txt

72

Multiple occurrences are removed from �le pictures.txt, again by using the sort -u com-
mand.

4.4 The Experimental Version 55

73 ## download and analyze pictures

74 COUNTER=0

75 for LINE in `cat pictures.txt`; do

76 PICTURE=`echo $LINE | awk -F',' '{print $1}'`

77 PAGE=`echo $LINE | awk -F',' '{print $2}'`

78 COUNTER=`echo $COUNTER+1 | bc`

79 SUFFIX=img_`echo 000$COUNTER | sed -e 's/^.*\([0-9]\{4\}\)$/\1/'`

80 echo "downloading picture $SUFFIX"

81 java getPicture $PICTURE $PAGE $SUFFIX dbentry.txt

82 PICTURE=`awk '/^local:/{ print $2 }' $SUFFIX'.txt'`

83 bit -v -h -c -p -d -s -f $PICTURE | tail +3 | strings >> $SUFFIX.txt

84 done

85

All pictures from �le pictures.txt are downloaded sequentially. The format of �le pic-
tures.txt is:

<picture-URL>,<page-URL>

<picture-URL>,<page-URL>

<picture-URL>,<page-URL>

...

From each line, the URL of a picture and the URL from the Page where this picture was
found is stored in the variables PICTURE and PAGE respectively. A new basename for
the picture is generated using a COUNTER and stored in SUFFIX. The new basenames
of the pictures are img 0001, img 0002, etc.
The pipe to the UNIX command bc in line 78 is necessary, since the bourne shell does not
include any arithmetic operations at all.
In line 81, the Java application getPicture is called with PICTURE, PAGE, SUFFIX and
the name of the �le containg the database entry. getPicture downloads the picture to
<basename>.<extension>, with the new basename and the extension .gif, .jpg, or .png
depending on the format of the picture. Since the picture is downloaded completely any-
way, the former restriction to the 400 bytes for analyzing the picture does not apply.
This is useful especially for the older JPEG version 1.00 or 1.01, which usally could not
be analyzed using the begin of the �le only and therefore caused bad results sometimes.
Besides downloading the picture, getFile creates a �le <basename>.txt containing infor-
mation about the picture, i.e. its parameters and information from the database. In line
82 the variable PICTURE is set to the name of the picture on the local �lesystem. This
information is extraced from <basename>.txt using the awk tool6. In line 82, bit [Haa99]
is called with PICTURE as parameter and the resulting information appended at the �le
<basename>.txt.

86 ## set field seperator to previous value

87 IFS=$OLD_IFS

88

89 ## optional: delete pictures not to be shown

6awk is an acromym for Aho,Weinberger, Kernighan.

56 4. The Personal Picture Finder

90 # for file in *.txt; do

91 # if [`awk '/^show:/{ print $2 }' $file` = 'no'] ; then

92 # rm -f `basename $file`'.*'

93 # fi

94 # done

95

After �nishing the iteration over lines in �les, the �eld seperator is set back to its old
value in line 87. Lines 89-94 contain a special feature to delete every image containing the
line Show: no in its textual description. This feature is currently not used, and therefore
commented out. It should be used when only matching are expected as result.

96 ## collect results

97 touch results.txt

98 echo "collecting results..."

99 for file in `/bin/ls -1 img*.txt | sort`; do

100 cat $file >> results.txt

101 echo '*' >> results.txt

102 done

103

In lines 96-102, the results for every picture are collected in one �le, results.txt. A ? is
added as seperator.

104 ## create HTML-page

105 echo "preparing htmlpage..."

106 ## usage: java collectResults <infile> <local/global> <first> <last>

107 java collectResults results.txt local $1 $2 > results_local.html

108 java collectResults results.txt global $1 $2 > results_global.html

109

The Java application collectResults creates the results as HTML pages (see Figures 4.9
and 4.10). The pictures are divided in two categories, good and bad, pictures bigger than
200 pixels in width are resized, links to the original source of the picture and the page
where it came from as well as the information available about the picture are added. The
images in the category good are sorted in order to display the best ones �rst.
The �le results local.html includes the pictures from the local �le system, while re-
sults global.html uses the original source. The latter one is much slower, but can be
mailed to somebody else without including all the image �les from the working directory.

110 ## print out information about search time

111 echo "Search started at $START"

112 echo "finished at "`date`

113

For the information of the user, the time when the search was started and ended is
displayed.

114 ## show results

115 netscape results_local.html &

4.5 Experiments with Machine Learning 57

Finally, the results are displayed by launching the users browser.

Example:

% ./ppftools/search Alan Turing

requesting database

guessing urls...

requesting metacrawler.

requesting ahoy.

requesting lycos.

requesting altavista.

all available data from search engines collected.

sorting pages

extracting pictures from http://aleph0.clarku.edu/~djoyce/mathhist/webresources.html

extracting pictures from http://ei.cs.vt.edu/~history/Turing.html

...

checking database

sorting pictures

downloading picture img_0001

downloading picture img_0002

...

downloading picture img_0206

downloading picture img_0207

gathering results...

preparing htmlpage...

Search started at Wed Apr 28 18:07:12 MET DST 1999

finished at Wed Apr 28 19:15:14 MET DST 1999

12%

75%

13%
good
bad
not accessible

Figure 4.11: Results of the evaluation of pictures

The execution of this request took 68 minutes. 207 URLs of pictures were found on pages
containing the name Alan Turing. 31 could not be downloaded. Out of the 176 pictures
successfully contained, 28 were evealuated as good, and 148 as bad (see Figure 4.11). 43
pages were consulted.

4.5 Experiments with Machine Learning

According to the problem speci�cation, the Personal Picture Finder should improve its
graphics �lters by learning from the collected data using low-level machine learning.

58 4. The Personal Picture Finder

Figure 4.12: Decision tree

The collected data contain information about previously found pictures and user feedback.
The simplest way of learning from those data is:

� Remembering results from previous requests with the same name.

� Remembering the user feedback about pictures previously displayed.

When the Personal Picture Finder is queried, the database is looked up for previous
queries with the same name. The information obtained can be used for adding previously
found pictures to the result set (memoization e�ect), rejecting previously rejected pictures
and thus saving time, rejecting pictures rejected by user feedback and sorting pictures to
be shown in order to show the best pictures �rst.
When the user gives a feedback to a picture, the value +1 or -1 is entered in the database
for good or bad feedback respectively. Obviously it is not advisable to reject a picture
after the �rst bad user feedback. If the feedback was wrong and the picture is rejected in
further requests, there is no way of correcting this mistake. Looking up the database, the
sum over those values is calculated, and pictures with a feedback value lower than -2 are
rejected.
Besides this low-level instance-based learning, I tried to �nd some general new �lters us-
ing supervised classi�cation learning. Suitable libraries written in C++ are provided by
MLC++, a Machine Learning Library of C++ classes developed at Stanford university
[Koh95].

4.5 Experiments with Machine Learning 59

The induction task here is to obtain a classi�er, which, given the parameters of a picture,
labels the picture with accept or reject, by making an assumption about the user's feed-
back for this picture. The task is inductive (as opposed to deductive), because there will
be no formal justi�cation (i.e., a proof) of the resulting classi�er.
In order to induce such a classi�er, the induction algorithm must have some input. This
type of supervised learning is sometimes called tabula rasa learning, as no domain knowl-
edge is given to the learning algorithm. Here, the input will be a set of picture parameters,
called instance. In order to train the algorithm, each instance has to be labelled with cat-
egory the classi�er should categorize this instance, i.e. accept or reject.
Each instance is a list of attribute values, such as �lesize, colordepth, width, height, and
shape. These attributes can be obtained from a database, and their values have to be
discrete, meaning all information about an instance must be expressible as a �xed list of
values. For example, the width of a picture is not expressed in pixel, but instead as one
of the values unknown, line, tiny, small, normal, large, big, and huge.
The set of labelled instances given to the induction algorithm is called a training set. Us-
ing this training set, the induction algorithm is able to generate a classi�er. A classi�er
can have many forms, like table, nearest neighbor, decision tree, or boolean formula. Here,
I choosed the decision tree.
After obtaining the classi�er, it is important to estimate, how good its perfomance is. If
the topic to be classi�ed is well know, it is possible to consult a domain expert and ask
for his opinion. Another possibility is to test the classi�er with new instances that were
not used for training, and evaluate its performance. The set of instances used for this is
called test set. It is usually assumed that the training set and the test set are random
samples from some underlying distribution. This applies here, since I choosed randomly
1422 instances from the database and split them up in two sets, one with 1222 instances
as the training set, and one with 200 instances as test set.
The MLC++ library o�ers a variety of induction algorithms. I choosed the classic ID3
algorithm [Qui86].
A part of the resulting tree is shown in Figure 4.12.
For the evaluation, two cases have to be distinguished: �rst, how many good pictures
from the test set were rejected and how many bad pictures were displayed.
The resulting decision tree has an average error probability on the test set of 42:5%. Out
of the 200 instances of the test set, 73 have been accepted, 23 of them by mistake. The
rate of falsely accepted pages results as 31:5%. More important are in this concept are
good pictures, that have been falsely rejected. Out of a total of 127 pictures rejected by
the decision tree, only 65 had to be rejected. 48:8% of the rejected pictures were okay,
which is obviously an inacceptable quote.
Due to this, the low-level machine learning for the �lters from the problem speci�cation
relies only on instance-based learning.
About the reason for the failure of the supervised classi�cation learning, two assumptions
can be made:

1. The data provided by the user may be biased, i.e. maybe it was not completely
obvious to the user, on which criteria his feedback should be used.

60 4. The Personal Picture Finder

2. Training the inducer by formal parameters of the pictures may be not su�cient.

The �rst problem could be solved, by explaining the meaning of the feedback to the user
a bit more as well as with checking the feedback before giving it to the inducer. For the
latter, additional information about the relative position of a picture in the document
and the requested name perhaps could increase the quality of the results.

4.6 Statistics

An important aspect when providing a web service available to the public, is to �nd out
about the users preferences. In Appendix C, the evaluation of the log �les is visualized.
Figure C.1 shows an almost constant rate of 600-700 requests for January until April 1999.
Much higher values in November (1634 requests) and December (1162 requests) can be
explained by two press releases, namely a long article in Computerwoche7 and a short
note with the URL of the Personal Picture Finder in K�unstliche Intelligenz8, a german
AI magazine, in a survey on intelligent agents.
Figure C.2 shows the usage of the Personal Picture Finder over the week. The access
rate is almost constant from Monday til Friday, with peaks on Monday and Thursday,
and signi�cantly decreasing at the weekend.

In Figure C.3, the usage of the Personal Picture Finder gets related to the time of the
day9. Least usage can be found at 6 a.m., from then constantly increasing|with a peak
before lunchtime at 11 a.m.|until 3 p.m. and then decreasing again until 6 a.m. An
interesting aspect is the almost constant usage between 4 a.m. and 7 a.m. So after
�nding out when the Personal Picture Finder is requested, the next question is concerned
with the users location. In Figure C.4, the origin of the requests is sorted by top-level
domains. As expected, most of the requests10 (3847) are from Germany (due to the press
releases mentioned before and appearance on nationwide TV news in July 98). Next are
the domains .net (613) and .com (399), followed by .se (Sweden, 327) and .es (Spain,
109).

4.7 By-products

This Section is about the applications developed in the context of the Personal Picture
Finder. Two netbots, a tool for analyzing graphics �le formats and theMultiHttpServer|
an implementation of the parallel pull concept|are introduced.

7Computerwoche 44/98, October, 30th, 1998, pages 25-26
8K�unstliche Intelligenz, 3/98, September 1998, page 61
9Time refers here to MET and MET DST, since most of the users live in this timezone.

10About top-level-domains, more statistic data was available than for the access time, hence the sum
over the statistic by top-level domains is not equals the sum over the requests in the time statistics.

4.7 By-products 61

4.7.1 Netbots

While trying to �nd the appropriate architecture for the Personal Picture Finder, I ex-
amined several other possibilities as well. One way for building a netbot is the usage
of a servlet based architecture only. The user interface consists of a simple HTML form
only. After �lling the form in, a servlet with the speci�ed parameters is called. The
output produced by the servlet is a dynamic generated HTML page. The advantage of
this architecture is the lack of any security critical operation. Also, the user needs no ad-
ditional capabilities in his browser besides displaying HTML pages. All computations are
performed server-side. The disadvantage is|compared with the Personal Picture Finder-
architecture|the rather simple display. Another disadvantage is producing a high load
on the server by performing all computations there.
The Personal Picture Finder could have been implemented like that too11.
In this section I present two simple netbots based on servlet.

4.7.1.1 A shopbot for CDs

The objective of the netbot presented here deals with buying CDs on the web. Given
a timeout and the title and artist of a CD, the netbot requests several CD shops in
germany12, collects the results it gets in return before the speci�ed timeout and presents
the results in a unique way in a table. The decision which provider is providing the spec-
i�ed item most economic-priced is still a di�cult task, because of di�erent conditions for
shipping etc. and therefore left to the user.
A special feature of this netbot is its con�gureability. When getting a request, the servlet
reads a con�g-�le specifying several shops. This speci�cation includes the name of the
shop, information how to request it and how to parse the resulting page, the name of the
currency and the URL for further information of the business conditions of this shop.

Example 1:

name: recordplanet

request: http://www.recordplanet.de/cn/euroshop.dll?command=parsequery

&mandant=11215&dlgtext1= $QUERY &submit=Schnellsuche

main: http://www.recordplanet.de/

agb: http://www.recordplanet.de/cn/euroshop.dll?command=sendpage&page=Agb.htm

currency: DM

table: 5

skiplines: 0

wrapper:

TD

TD

FONT Text Price

TD

TD

11As a matter of fact there was an experimental version of the Personal Picture Finder implemented
in a servlet only.

12I restricted the search to one country to avoid comparing di�erent currencies.

62 4. The Personal Picture Finder

FONT Text Description

TD

FONT Text Number

*

Figure 4.13: User interface of the CD shopbot

The request is performed by taking the string speci�ed in the request: line and evaluating
the variables. In this example, the provider does not distinguish between artist and title
but instead o�ers a keyword search in its database. The netbot takes the parameters
speci�ed by the user, concatenates it and puts and substitutes the variable $QUERY with
it. The resulting request string is used for a HTTP access in the World Wide Web. When
a page is returned, the netbot uses a simple wrapper to �nd the desired information. In
this case, the �fth table is looked up. This table contains no header lines to be skipped.
The speci�ed tags are looked up in every line. In the FONT tag following the second TD
tag the information about the price is found as Text included in this tag. The description
of the item and the item number can be found in a similar way.

4.7 By-products 63

Figure 4.14: Result of a query for 'Canned Heat'

Example 2:

name: jpc

request: http://www.aeon-plaza.de/MallParser?

code=aeon.mall.servlet.plugin.SearchCD&providerid=10?cd=cd

&track=track&artist= $ARTIST &title= $TITLE

main: http://www.aeon-plaza.de/providers/jpc/search_cd.mall

agb: http://www.aeon-plaza.de/providers/jpc/ShopInfo.mall

currency: DM

64 4. The Personal Picture Finder

table: 2

skiplines: 1

wrapper:

TD

TD

A Href Info Text Artistname

A Text Title

TD

FONT Text Price

*

This example di�ers from the previous in the way the request is build. Here, the provider
distinguishes two variables for database lookup, namely artist and title. The information
speci�ed by the user is �lled in in the variables $ARTIST and $TITLE in order to perform
the request. The wrapper takes the result, locates the second table, skips the �rst line of
this table and then checks every line for the speci�ed tags. In the �rst A tag after the
second TD tag, the information about the artist's name is found in the text included in
this tag. Furthermore a link to more detailed information about this item is provided in
the HREF parameter of the same tag. The price of the item is speci�ed in the �rst FONT
tag following the next TD tag.
The advantage of this architecture is the easy way of con�guring it: Adding some lines
specifying another provider to the con�g �le is all one has to do for providing another
source of information. As well, just by exchanging the con�g �le, one could make a
shopbot for books as well without any changes in the program code at all.
This netbot uses libraries of the Personal Picture Finder. As an advantage of that, the
implementation of this netbot took less than one day and needed less than 300 lines of
new code.
It is publicly available at http://�nder.dfki.de:7000/cdshop/.

4.7.1.2 An information gathering agent

Another netbot based on the libraries based on the libraries of the Personal Picture Finder
is a simple information gathering agent. Its objective is to �nd and extract the meal plan
of the day from the university's canteen. Problems occuring in this task are the frequent
change of the URL and the fact that there is not one speci�c URL to bookmark. The
meal plans are provided by one page for every week, every week with another URL.
The agent described here does not expect any information provided by the user. When
the servlet is called, it downloads the university's main page, checks it for keywords, and
follows matching links. Doing this recursively it �nally reaches a page with links for
mealplans for several weeks. The agent checks the current date and tries to �nd a link to
a week including the current date. It follows this link, checks the next page for the table
with the mealplans, again searches for keywords indicating the days of the week, cuts out
and returns the plan for the current day.
Using the classes from the Personal Picture Finder, the core of this agent was implemented
in 80 lines of program code. It is publicly available at http://�nder.dfki.de:7000/mealplan
since March 99 and works robust so far.

4.7 By-products 65

4.7.2 The Whatsit? tool

In this section, I will describe a simple tool called whatsit? which analyzes di�erent graph-
ics �le formats used on the World Wide Web.
Given a list of URLs or local �les the Whatsit? loads the speci�ed images, checks the sig-
nature, in order to �nd out the format13 and according to that, it parses the �le content,
in order to �nd parameters for width, height and depth of the image. While developing
the Personal Picture Finder, I revised several newsgroups for Java developers to �nd out
if such a tool is already in existance and publicly available. Coming across a great va-
riety of similar requests, but no answers I decided to publish my implementation in the
appendix of this thesis (see appendix A.2.4). Due to its object oriented design, the API
can be reused for a variety of other applications, especially to enable agents living on the
internet to automatically �nd out what kind of data14 they are dealing with15.
Using the list of �les or URLs given in the command line, whatsit? loads them sequen-
tially, checks the header signature and parses the �les depending on their format in order
to �nd out width, height and depth of the image.

Example:16

$ java whatsit /home/endres/pictures/ana.gif \

http://rimbaud/gif/apache_logo.gif \

Photo.jpg

/home/endres/pictures/ana.gif: GIF 87a, 546x536x8, 132490 bytes.

http://rimbaud/gif/apache_logo.gif: GIF 89a, 400x148x8, 23439 bytes.

Photo.jpg: JPG 1.01, 493x373x24, 112556 bytes.

$

Let us take a closer look at the program code. After importing the packages java.io (for
I/O operations like accessing �les from the local �le system), java.net (for establishing
connections to the WWW) and endres.graph (for analyzing graphics �le formats17), the
de�nition of class whatsit follows. As an application it needs a main-method. This main
method checks the command line parameters and sequentially creates a new instance of
the whatsit-class for every parameter. The constructor of this class then reads the �le via
the read�le()-method and in case the �le is accessible, it executes the checkFile()-method.
read�le() checks if the given parameter describes a URL or the name of a �le on the
local �le system and then opens an according DataInputStream and reads the �le in a

13Especially when working on heterogenous sources like the WWW one should not assume that every
�le is what it seems to be according to its extensions. GIFs with a .jpg-extension or vice versa occur and
usually are displayed properly on common browsers.

14An older version of whatsit? recognized some more �le formats used on the web, like java classes
or postscript documents. The code example described in this thesis is restricted to graphics �le formats
only.

15For example a spider or crawler has to know whether the link he follows leads to another webpage
or to another �le, like for instance a postscript document.

16Java is platform independent. I assume a UNIX shell for this example. One might as well execute it
on any other platform.

17The package endres.graph is explained in detail in the next section.

66 4. The Personal Picture Finder

Object gff

jpg

png

gif

INTERFACE

ABSTRACT
CLASS

KEY

CLASS

implements

extends

endres.graphjava.lang

Figure 4.15: Classes of the endres.graph package

byte-array.
checkFile() checks the signature of the �le, calls the appropriate analyzer from the en-
dres.graph package and eventually prints out the result. The package endres.graph is
crucial here. An overview of this package is given in Figure 4.15. It consists of the ab-
stract class g�18 and subclasses for the formats gif19, jpg and png.
The class g� is abstract and therefore cannot be instanciated. Here, the variables used in
every subclass, like the integers for width, height etc. are de�ned, as well as the desired
methods like getHeight(), getVersion() and several others.
Furthermore, some useful static methods for working on a byte-array representing a �le
are de�ned.
In class gif the advantage from de�ning the abstract class g� �rst is obvious. The code
became very short. It consists of three methods only: one static method to check the �le
signature, the constructor which simply calls the constructor of the superclass and the
analyze()-method. The header of the gif-format is static, so a where to get the desired
information and how to interpret it is su�cient.
Class jpg consists of the same three functions as gif, but it is a bit bigger. Unfortunately,
the static header consisting of the SOI20 and the APP021, which contains information
about format and version only. The dimension of the picture is denoted in a SOF22. After
identifying the �rst SOF we use the markerlength value to �nd the following SOF until
we �nd one containing the information we need.
The Portable Network Graphics format png is similar to gif. Again, just the desired in-
formation at static positions is checked. In theory, a png could contain a picture with up
to 4G pixels in height and width. Accessing height and width in this code example works
up to 2G pixels only, which should be su�cient for any practical use.
There is only one version of png, so the method getVersion() will return an empty string.

18g� is an acronym of graphics �le format.
19In this example it is not necessary to distinguish GIF87a and GIF89a. There are a lot of di�erences

between these two formats, but the information required here can be found in the same way.
20SOI is an acronym for Start Of Image.
21APP0 is the Application Marker Segment.
22SOF is an acronym for Start Of Frame.

4.7 By-products 67

Subclasses for other graphics �le formats can be inserted easily in the object model de-
scribed above by subclassing g�.

4.7.3 MultiHttpServer

Internet agents require fast, concurrent access to many web pages. This service should
be stable, central, and easy to access independently from the actual implementation lan-
guage. In this Chapter, I describe the MultiHttpServer (MHS), a parallel pull engine
implemented in Java with a TCP/IP interface for communication with other programs.
A second TCP/IP interface provides information for administration purposes. A simple
con�g-�le allows application-oriented tuning of the MultiHttpServer. An optional Java-
Servlet can remotely start up the MultiHttpServer on demand.
Internet Agents and Netbots usually deal with numerous information sources, e.g. web-
pages. Downloading a page is a time consuming operation. On the other hand it is
desirable to collect all information required as fast as possible to produce an acceptable
runtime behaviour.
The idea of parallel pull is to save time by performing download tasks in parallel. It has
been successfully used in several applications developed in project PAN.
The following sections describe the underlying idea, implementation details, and the spec-
i�cation of the MultiHttpServer's communication protocol.

4.7.3.1 Architecture of the MultiHttpServer

W

W

W

MultiHttpServer

request

request

request

...

Request

Request

Request

Parsing

Parsing

Parsing

Request

Request

Request

Handler

Handler

Handler

...

server

Figure 4.16: Architecture of a single MultiHttpServer process

In this section I introduce the architecture of a single MultiHttpServer instance. As
discussed later it can be useful|depending on the required capacity|to have several

68 4. The Personal Picture Finder

instances of a MultiHttpServer running. At the moment I focus on the single server
instance shown in Figure 4.16.
It has two core components, a server module and several service modules. The server
accepts requests from clients23 by using a TCP/IP interface. For every client connection
a service module is generated. The service module consists of two parts. A Request
Parsing module controls the dialog protocol with the client and a Request Handler module
executes the client's request by accessing the World Wide Web (WWW) in parallel.

4.7.3.2 Stability Problems

Parallel execution of requests can be done in two di�erent ways: multithreading or con-
current execution of processes. Both approaches are limited by the operating system.
Former versions of the MultiHttpServer used multithreading only, which lead to stability
problems when the maximum number of threads for one process was reached. Therefore it
was necessary to provide a mechanism for creating multiple instances of the multithreaded
MultiHttpServer and scheduling the queries. Still it is important to keep in mind that no
matter how clever the system resources are used they will always be limited.

4.7.3.3 Scheduling and forking processes

MultiHttpServer

request

port number

dialog

MultiHttpServer

MultiHttpServer

MultiHttpServer

MultiHttpServer

user scheduler

Figure 4.17: Request Scheduling

The current version of the MultiHttpServer includes a scheduler which supervises all run-
ning MultiHttpServer instances and schedules user queries. Before actually performing

23In this context I do not distinguish between a human user and a client application when using the
word client.

4.7 By-products 69

his queries the user asks the scheduler which instance of the MultiHttpServer he should
use. The scheduler answers by telling the port number of the least busy MultiHttpServer.
The user then connects to this port and goes ahead with placing his query.
The scheduler regularly (e.g. every three seconds) collects information from the Multi-
HttpServers about their status (i.e. number of running threads). If for any reason a server
does not answer anymore, the scheduler kills it and starts a new one. In general, servers
are created and killed depending on how busy the whole parallel pull engine is. The
information about how this generating and killing of processes should be done is provided
by a con�g-�le which the user should set up to his requirements and system resources as
described in Section 4.7.3.6.
The architecture of the cooperation between the scheduler and the instances of the Mul-
tiHttpServer is shown in Figure 4.17. In order to establish a communication to the Mul-
tiHttpServer, the user connects to the scheduler via TCP/IP. The scheduler checks the
capacities of all MultiHttpServer running, decides which one should handle the user re-
quest, returns the port number, and disconnects the user. The user then connects to the
speci�ed port and runs the server protocol as described in the following section.

4.7.3.4 The server protocol

In this section I describe the protocol used for communication between the server and the
client. It can be used as a short reference for developers. Sample sessions are shown in
the next section.

� mode:24 <one/all>
There are two di�erent modes for the server protocol, one and all. When starting a
session the �rst thing one should do is specify the protocol mode to be used.
Mode one means that only one of the pages requested is interesting. This is useful
if there are several URLs of webpages providing equivalent information, e.g. three
di�erent weather forecast information services.
In the one-mode, they are all requested, but the result of one of them is su�cient
and information from other sources no longer interesting. As soon as one requested
page returns, all other requests will be cancelled and all other running threads killed.

Information already received from other pages will get lost.
Mode all does not kill running threads autonomously. All of the requested pages
will be downloaded (unless killed using the kill-command). This mode is used if the
information on the requested pages is not equivalent.
If no mode is speci�ed, mode all is used by default.

� get: <URL> [<timeout> [+]]
Request a URL. Timeout (in seconds) and additional parameters (in case the re-
quested URL is a cgi-script) can be speci�ed.
Examples:

24Please not that the colon is part of the command.

70 4. The Personal Picture Finder

{ get: http://www.dfki.de/
requests the webpage of DFKI. The information should be obtained no matter
how long it takes.

{ get http://www.microsoft.com/ 2
requests the Microsoft webpage. If it takes more than 2 seconds to download,
the information is not interesting anymore.

{ get: http://www.info.edu/pplsearch.cgi 30 +
�rst=Arthur +
last=Rimbaud +
email= +
country=fr
(the '+' at the end of a line indicates that further parameter speci�cations
follow).

{ get: http://www.info.edu/pplsearch.cgi?�rst=Arthur&last=Rimbaud

Let us take a closer look at the last two examples. Both request the same page. The
�rst one by specifying the parameters separately, one in every line. The parameters
are concatenated and written on the URL connection. This is the POST method
of the HTTP protocol. The second example directly codes the parameters in the
request string using the GET method. Most CGI scripts handle POST and GET
methods in the same way if only a few parameters are speci�ed. One of the main
di�erences is that the POST method can handle much longer parameter inputs, e.g.
text.
A detailed description of those methods can be found in the HTTP speci�cation25.

� authget: <URL> <timeout> <login> <password>
Get a password protected URL using speci�ed login and password.

� info: <URL>
Get available information about a requested URL.

� show: <URL>
Show the output of a requested URL (if available).

� kill: <URL>
Remove a no longer needed page or cancel downloading it.

� shortinfo
Get a short overview of the status of all requested pages.

� stack
Show the URLs of all requested pages.

� stacksize
Return the amount of requested pages.

25See www.w3c.org.

4.7 By-products 71

� available
Return the amount of already received pages.

� rest
Return the addresses of pages still to be expected, i.e. all pages of the stack besides
those reaching timeout or not accessible for any other reason.

� more
Return the maximum amount of pages still to be expected.

� success
Return one URL of a received page. If there is no page available yet the return
value is 'no'.

� waitsuccess
Return one URL of a received page. Wait until a value can be returned.

� waitsuccess <timeout>
Return one URL of a received page. Wait up to <timeout> seconds for a return
value.

� status: <URL>
Show the status of a requested page. Return values are

{ connecting

{ connected

{ receiving

{ received

{ timeout

{ Error <errorcode>

� accesstrend: <URL>
Show the access trend of a requested page. Return values are

{ increasing

{ constant

{ decreasing

� accessrate: <URL>
Show the access rate of a requested page in bytes per second.

� poud: <URL>
Percentage of unfetched data of a requested page. If the size of a page is unknown26

the return value is set to -1.

26The size of a document is an optional header �eld in version 1.0 of HTTP.

72 4. The Personal Picture Finder

� size: <URL>
Show the size of a requested page in bytes.

� help [<command>]
help shows a general help including a list of all available commands, help
<command> explains the usage of <command>.

� version
Display version and copyright information.

� bye
Terminate session and close TCP/IP connection.

4.7.3.5 A sample session

This section shows an example of a MultiHttpServer session. After obtaining a TCP/IP
port number from the scheduler, the client connects to a MultiHttpServer instance. At
the beginning of a session, the server displays a prompt.

+--+

| MultiHttpServer version 1.0 april 99 |

| Christoph Endres, DFKI GmbH Christoph.Endres@dfki.de |

+--+

Type 'help' for more information

-Ok-

The client now requests three webpages.

get: http://www.dfki.de/

-Ok-

get: http://www.microsoft.com/ 1

-Ok-

get: http://www.whitehouse.gov/ 10

-Ok-

Using the shortinfo-command, the client checks the current status of the pages he re-
quested.

shortinfo

http://www.microsoft.com/ timeout

http://www.dfki.de/ received

http://www.whitehouse.gov/ received

-Ok-

The success-command is now used by the client in order to obtain the URL of one of the
successfully received pages. The page is displayed using the show-command.

4.7 By-products 73

success

http://www.dfki.de/

-Ok-

show: http://www.dfki.de/

<HTML>

<HEAD>

<TITLE>DFKI - WWW: New Version 13.04.99</TITLE>

</HEAD>

<frameset cols="144,*" border=0 frameborder=0 framespacing=0>

<frame src="dfkiweb/menu.htm" name="links" noresize>

<frame src="dfkiweb/start.htm" name="rechts">

</frameset>

</HTML>

-Ok-

After obtaining the page, the client removes it from the server and then closes the con-
nection.

kill: http://www.dfki.de/

-Ok-

bye

bye

-Ok-

4.7.3.6 Con�guration

The MultiHttpServer is con�gured by editing a con�g �le. Here is an example:

#

Configfile for the MultiHttpServer

#

TCP/IP ports for administrator and user

If no values are specified, the ports 2000 and 2001 are used by default.

Admin: 2001

User: 2000

minimum and maximum instances of MultiHttpServer running in parallel

If unspecified, a minimum of 1 and a maximum of 10 is assumed.

Instancemin: 2

Instancemax: 5

set critical value for the load of a MultiHttpServer instance.

Unit is pages per server.

Default value is 50

Load: 25 pps

The values to be speci�ed so far are port numbers for administrator and user, a minimal
and maximal number of MultiHttpServer instances running concurrently, and a critical
value for the load of a server. The latter is used as an indicator for creating new instances
of MultiHttpServer at runtime.

74 4. The Personal Picture Finder

4.7.3.7 Using the administrator port

By connecting to the administrator port some useful information about the status of the
system is provided, e.g. the number of MultiHttpServer-instances currently running and
the number of their threads.

Example:

--

MultiHttpServer 1.0

(c) DFKI GmbH 1999

running on serv-200.

You are connecting from serv-200.

Adminport is 2001, userport is 2000.

From 2 up to 5 MHS instances can be created.

Critical load is 5.

2 instances running:

34937: 3 connections, 12 pages.

34956: 5 connections, 17 pages.

--

4.7.3.8 Start on demand

Using a servlet it is very easy to start up the MultiHttpServer on demand. A Java-Servlet
enabled Webserver is necessary. An application wanting to use the MultiHttpServer sim-
ply creates a http-connection to the startMHS servlet, for instance to:
http://www.myserver.edu/startMHS?command=start.
The servlet starts the MultiHttpServer (in case it was not running yet) and returns the
number of the client port and the administrator port (which usually is not necessary since
one usually knows which ports one speci�ed in the con�g �le).

4.7.3.9 Clients

Clients in several programming languages for theMultiHttpServer have been implemented.
Sample clients in the languages Java, Perl 5, and Eclipse Prolog can be found in the
original MultiHttpServer documentation [End99].

4.8 Related work

Attempting to compare the Personal Picture Finder with similar internet services turns
out to be di�cult, since there is nothing directly comparable at the moment. In this
section I present some services sharing either the metasearch paradigm or the dedication
to �nd pictures with the Personal Picture Finder.
The standard tools for �nding information on the internet are index search engines that
are based on a index (usually a database). Metasearch engines, on the other hand, access

4.8 Related work 75

Metacrawler Lycos Altavista PPF

dynamic
p p

data evaluation
p p p p

data compression
p p p

metasearch paradigm
p p

Table 4.1: Personal Picture Finder and related services.

several index search engines, evaluate the results and present a �nal result in a unique way.
The most famous example of a metasearch engine is Metacrawler27 [SE96]. The Personal
Picture Finder is a metasearch engine. Unlike other metasearch engines, its purpose is
not only to collect and evaluate data, but also to compress and analyze resulting data.
The aspect of searching pictures is shared with other internet services, which are in con-
trast to the Personal Picture Finder static. Two well known examples are:

� AltaVista Photo Finder28

The Altavista Photo Finder is a picture database. Additional to the information
of where to �nd a picture (which is either a URL somewhere on the WWW or a
reference to its own database) a short description of the content of the picture is
given. The picture descriptions are browsed for the requested keywords. The search
results are shown as thumbnails. The user has the possibility to see the original
picture, along with the textual description. The system is static, at runtime only
the local database is accessed, no requests to the WWW are performed.

� Lycos Bildkatalog29

The Lycos Bildkatalog30 is a static service as well. Like with the Altavista Photo
Finder, at runtime a database is accessed. The classi�cation of the pictures does
not include a textual description of the picture. The database does not include own
pictures, but provides references to pictures on the WWW instead. The user can
submit own URLs to be included in the database. User-submitted pictures are a
great advantage when dealing in a dynamic environment like the WWW, on the
other hand it is based on trust in every user providing information and can lead to
incorrect data. For example when looking up Boris Becker (a german tennis player),
one gets a huge variety of easter eggs as result, which does not match the query at
all.

Static information look up provides fast results, but can never be up to date in a dy-
namic environment. Dynamic search for information is a bit slower, but it meets the
requirements of the dynamic environment. By using the metaseach paradigm, the Per-
sonal Picture Finder accesses the static databases mentioned above as well as dynamic

27www.metacrawler.com
28image.altavista.com
29www.de.lycos.de
30The word Bildkatalog is german and means Picture Catalogue

76 4. The Personal Picture Finder

search in pages obtained from Metacrawler and Ahoy!. Using Metacrawler makes the
Personal Picture Finder a meta-metasearch engine. It combines fast static information
with dynamic information lookup. A survey on these properties is shown in Table 4.1.

Chapter 5

Conclusion

5.1 Summary

In this thesis I presented the Personal Picture Finder, a netbot with dedication to �nd
portrait photos on the web. I implemented the Personal Picture Finder system as practical
part of my thesis. The system is available online at http://�nder.dfki.de:7000/ since
the �rst public presentation at the 10th anniversary of DFKI GmbH in July 1998 and
successfully used ever since then. The press, TV, several presentations and a national
Internet-conference made it popular. More than 500 requests are processed every month.
The technology developed for the Personal Picture Finder is a powerful tool for building
other netbots. The MultiHttpServer, a by-product of the Personal Picture Finder, and the
Parallel Pull technology became an essential module for every major product in project
PAN. Due to the object-oriented paradigm of the Java programming language a lot of
reusable code was produced.
An experimental version of the Personal Picture Finder increases the quality of service.
Furthermore it provides interfaces to other �lters, e.g. the Bitmap Information Tool and
additional information sources. An extensible, pattern-based URL generator is included
as well. Using HyQL scripts, the Personal Picture Finder can be adapted easily in the
dynamic environment of the World Wide Web using the Programming by Demonstration
dialog developed in PAN. Besides providing a multitude of possible applications, the
Personal Picture Finder is a prototype of an internet agent. The basic internet agent
technology developed here can be used for other applications as well.

5.2 Outlook

Developing a system like the Personal Picture Finder was an interesting and inspiring
work. It lead to a lot of nice ideas for new netbots or features that could be added.
Some could be added, like the mini�nder or the URL generator, some others should be
mentioned here as an outlook on future work.
A mail interface could be included in the experimental version. The user then simply
sends a mail with his request to the Personal Picture Finder and gets the results as at-

78 5. Conclusion

tachment of the reply some hours later.
Face recognition algorithms could be added too. Some programs are freely available on
the internet and could be added to the script easily.
The new video �le format MPEG 7 will set new standards for encoding comments in a
video stream. These features could be used to look up video clips containing the requested
person, maybe those clips could be post processed to obtain single matching pictures out
of the video.
The intention of Personal Picture Finder was to build a prototype. Other applications
could be assembled using its API to look up any information, like email addresses, docu-
ments, sound �les, or even banners, email icons, backgrounds, etc.
At DFKI GmbH, the reuse of technology developed for the Personal Picture Finder is
discussed in at least two new projects. One of them is concerned with looking up docu-
ments, the other one with real estate business.
Surely a lot of other applications will emerge here, the limitations are set by the informa-
tion provided on the World Wide Web and the imagination of the developer only.

Appendix A

Reusable Code Examples

An important part of the Personal Picture Finder implementation was the access of graph-
ics �les over the web and the analyze of their parameters. The tool whatsit? described
in section 4.7.2 performs this task. The source code of this tool is added here. Due to is
modular structure, it could be used in other applications as well.

A.1 Whatsit? - A graphics �le format analyzer

import java.io.*;

import java.net.*;

import endres.graph.*;

public class whatsit {

public static void main(String args[]) {

for (int i=0; i<args.length; i++) {

new whatsit(args[i]);

}

}

String file;

boolean unavailable = false;

byte content[];

public whatsit(String file) {

this.file = file;

readfile();

if (!unavailable) {

checkFile();

} else {

System.err.println(file+" is not available!");

}

}

void readfile() {

try {

DataInputStream in;

80 A. Reusable Code Examples

int filesize;

if (file.indexOf(":/")>0) {

URL url = new URL(file);

URLConnection urlc = url.openConnection();

in = new DataInputStream(urlc.getInputStream());

filesize = urlc.getContentLength();

} else {

in = new DataInputStream(new FileInputStream(file));

filesize = in.available();

}

if (in != null) {

content = new byte[filesize];

in.readFully(content);

in.close();

}

} catch (Exception e) {

unavailable = true;

}

}

void checkFile() {

gff g = null;

if (gif.check(content)) g = new gif(content);

if (jpg.check(content)) g = new jpg(content);

if (png.check(content)) g = new png(content);

System.out.println(file+":\t"+

g.getFormat()+" "+

g.getVersion()+", "+

g.getWidth()+"x"+

g.getHeight()+"x"+

g.getDepth()+", "+

g.getLength()+" bytes.");

}

}

A.2 The endres.graph API

After the main application of the whatsit?-tool described in the previous section, the source
code from the package endres.graph follows here, including analyzers for the formats GIF,
JPEG and PNG.

A.2.1 endres.graph.g�

package endres.graph;

public abstract class gff {

byte content[];

int width = -1;

A.2 The endres.graph API 81

int height = -1;

int depth = -1;

int length;

String format = "";

String version = "";

public gff(byte content[]) {

this.content = content;

fileLength();

analyze();

}

public abstract void analyze();

public void fileLength() {

length = content.length;

}

public int getWidth() {

return width;

}

public int getHeight() {

return height;

}

public int getDepth() {

return depth;

}

public int getLength() {

return length;

}

public String getFormat() {

return format;

}

public String getVersion() {

return version;

}

static int bytetoint(byte b) {

int i = (int)b;

if (i<0) i+=256;

return i;

}

static String getContentString(byte content[], int start, int length) {

StringBuffer accu = new StringBuffer();

for(int i = start; i<(start+length) ; i++) {

accu = accu.append((char)content[i]);

}

82 A. Reusable Code Examples

return accu.toString();

}

static int getInt(byte content[], int start, int length) {

int accu = 0;

for(int i = start; i<(start+length) ; i++) {

accu = 256*accu+bytetoint(content[i]);

}

return accu;

}

static int getWord(byte content[], int start) {

return bytetoint(content[start])+(256*bytetoint(content[start+1]));

}

}

A.2.2 endres.graph.gif

package endres.graph;

public class gif extends gff {

public static boolean check(byte content[]) {

return getContentString(content,0,3).equals("GIF");

}

public gif(byte content[]) {

super(content);

}

public void analyze() {

width = getWord(content,6);

height= getWord(content,8);

depth = (bytetoint(content[10]) & (int)7)+1;

format = "GIF";

version = getContentString(content, 3, 3);

}

}

A.2.3 endres.graph.jpg

package endres.graph;

public class jpg extends gff {

public static boolean check(byte content[]) {

return getContentString(content,6,4).equals("JFIF");

}

A.2 The endres.graph API 83

public jpg(byte content[]) {

super(content);

}

public void analyze() {

format = "JPG";

// check version

int ver = getInt(content,12,1);

if (ver < 10) {

version = getInt(content,11,1)+".0"+ver;

} else {

version = getInt(content,11,1)+"."+ver;

}

// search first 'FF'-marker

int i = 10;

while((bytetoint(content[i])!=255) && (i<length-7)) {

i++;

}

// use markerlength indicator to find next marker

// until required data is found

boolean found = false;

while(!found && (i<length-10)) {

int markerlen = getInt(content,i+2,2);

int identifier = bytetoint(content[i+1]);

if ((identifier==0xC0)||

(identifier==0xC1)||

(identifier==0xC2)||

(identifier==0xC0)||

(identifier==0xCA)) {

found = true;

height=getInt(content,i+5,2);

width=getInt(content,i+7,2);

depth=8*bytetoint(content[i+9]);

} else {

i+=(markerlen+2);

}

}

}

}

A.2.4 endres.graph.png

package endres.graph;

public class png extends gff {

public static boolean check(byte content[]) {

return ((bytetoint(content[0])==0x89) &&

(bytetoint(content[1])==0x50) &&

(bytetoint(content[2])==0x4E) &&

(bytetoint(content[3])==0x47) &&

84 A. Reusable Code Examples

(bytetoint(content[4])==0x0D) &&

(bytetoint(content[5])==0x0A) &&

(bytetoint(content[6])==0x1A) &&

(bytetoint(content[7])==0x0A));

}

public png(byte content[]) {

super(content);

}

public void analyze() {

width = getInt(content,16,4);

height = getInt(content,20,4);

depth = getInt(content,24,1);

format = "PNG";

// PNG does not have a version identifier.

}

}

Appendix B

User Manual

B.1 Usage

The public version of the Personal Picture Finder is easy to use. It works with any
Java and Javascript enabled browser, like Netscape Communicator version 4.0 or higher
or Microsoft Internet Explorer version 4.0 or higher. It was tested under Solaris, Linux,
Macintosh, and Windows.
Before downloading the webpage of the Personal Picture Finder, Java and Javascript
should be enabled.
In case of the Netscape Communicator, this can be done in menu edit, menuitem prefer-
ences. A new window is popping up with a list entitled Category. The listitem Advanced
contains a menu with checkboxes Enable Java and Enable Javascript. Both must be
checked.
For the Microsoft Internet Explorer, this is similar. In menu View, menuitem Internet
Options pops up a new window. Here, in menu Advanced, a list of checkboxes can be
found. Under the keyword Java VM are three checkboxes, labelled Java logging enabled,
Java JIT compiler enabled and Java console enabled. All of them have to be checked (de-
fault is the second out of these three only). A restart of the Microsoft Internet Explorer
is required.
The next step is to download page http://�nder.dfki.de:7000/. On the left side of the
page, the user interface appears (see Figure B.1). You can enter �rst and last name of
the required person, then click GO and wait for results to appear on the right side of
the page. Alternatively, you can choose the mini�nder by clicking on the link mini�nder.
The same user interface pops up in a separate, small window. The main window of the
browser can be used as usual now. As soon as results for the query return, a new window
with those results pops up.
Along with the results, checkboxes with thumbs up and thumbs down icon appear. In

case you want to leave a feedback about the picture, check one of these boxes for every
picture. The feedback should indicate if the picture matches the query, not your opinion
whether this person looks good on this picture or not. To �nd out about the source of
a displayed picture, move the mouse pointer over it. The name of the page where it was
found is displayed then. After clicking on the picture with the left mouse button, a new

86 B. User Manual

Figure B.1: User interface on the webpage

browser window with this page will be opened. In case you want to use this picture, please
contact the webmaster of this page. The Personal Picture Finder just looks up pictures,
it does not provide them for further usage. The pictures presented as result are usually
not copyright-free.
During the search, some information is shown on the applets display. Their meaning is
explained in detail in Chapter 4.
After �nishing your request, please click the STOP button. Before starting a new request,
please click the CLEAR button. If the search is not terminated, a useless process is idling
on the server and has to be cleaned up (this works automatically with a script cleaning
up the server every 10 minutes, but can be avoided anyway by the user).

B.2 Fixing problems

When using the Personal Picture Finder, some errors may occur. Some known problems
are:

� Firewalls:
Since the Personal Picture Finder's webserver uses port 7000 instead of the default
port 80, some �rewalls won't download this page. Even those downloading the page
will most likely not allow a TCP/IP connection to the Personal Picture Finder
application running on serverside.
In case you want to use the Personal Picture Finder anyway, please choose another

B.2 Fixing problems 87

computer or ask your system administrator to recon�gure the �rewall with special
rights for the computer with IP-address 134.96.188.66, alias serv-200.dfki.uni-sb.de
or �nder.dfki.de.

� Javascript error:
Sometimes Javascript reports an error which says, that a function is unde�ned. This
problem occurs, when the browser window is resized while the page is loaded. A
reload of the page or the frame with the applet usually solves this problem.

� No applet:
If the applet can not be loaded, please make sure, that your browser was installed
completely and Java is enabled. On Microsoft operating systems, you can also try
a restart of your browser.

� Results disappear:
When using the mini�nder, the result window should not be resized. The page
contained in it is not cached, and hence can not redisplayed. When opening the
result window, the parameter resizable is set to no. On some platforms, netscape
simply ignores it and pops up a resizable window.

� No scrollbar:
Sometimes no scrollbar appears in the result window or frame. In this case, you
can try to click on the background of this window or frame and start scrolling down
with the cursor keys. Usually the scrollbar appears then.

Please keep in mind that these problems are not bugs in the implementation of the
Personal Picture Finder, but general problems every platform and browser independent
service has to deal with.
For any question not answered here, please contact picture�nder@dfki.de. When reporting
an error, please specify the problem, and include information about your operating system
and your browserversion.

Appendix C

Access statistics

This Section contains the usage statistics mentioned in Section 4.6. The diagrams repre-
sent the access of the Personal Picture Finder, sorted by months, days, time, and top-level
domains.

0

500

1000

1500

2000

Nov Dec Jan Feb Mar Apr

Figure C.1: Access (sorted by months)

9
0

C
.
A
c
c
e
ss
sta

tistic
s

0

200

400

600

800

1000

M
o

n
T

u
e

W
ed

T
h

u
F

ri
S

at
S

u
n

F
igu

re
C
.2:

A
ccess

(sorted
b
y
d
ay
s)

0
50

100
150
200
250
300
350
400
450
500

0 a.m.

2 a.m.

4 a.m.

6 a.m.

8 a.m

10 a.m.

12 a.m.

2 p.m.

4 p.m.

6 p.m.

8 p.m.

10 p.m.

F
igu

re
C
.3:

A
ccess

(sorted
b
y
tim

e)

91

0 500 1000 1500 2000 2500 3000 3500 4000

de

net

com

se

es

at

ch

nl

edu

fi

ca

uk

au

no

be

fr

org

dk

hu

us

za

hr

br

it

mx

my

lu

pt

gr

il

is

kr

si

sk

Figure C.4: Access (sorted by top-level domains)

Appendix D

Additional Information

Figure D.1: Video clip: Presentation at the castle

Some additional information in this context can not be represented in form of a printed
document. The CD ROM included with this thesis contains:

� Some samples of search results of the experimental version of the Personal Picture
Finder.

� This document as postscript and pdf-�le and some of the articles quoted here.

� The source code of the whatsit? tool.

� A video clip of the �rst public presentation of the Personal Picture Finder in July
1998 at the castle in Saarbr�ucken.

94 D. Additional Information

� Newspaper articles about the Personal Picture Finder and the 10th anniversary of
DFKI GmbH.

� Video clips of the news programs heute and Aktueller Bericht (excerpts) showing
the Personal Picture Finder.

� Photos of some public presentations of the Personal Picture Finder.

� The slides I used for my speech at the Informatikforum 98.

Bibliography

[ARM98] Elisabeth Andr�e, Thomas Rist, and Jochen M�uller. Integrating Reactive and
Scripted Behaviors in a Life-Like Presentation Agent. In Proceedings of the
Agents98 Conference, pages 261{268, 1998.

[Asi50] Isaac Asimov. I, ROBOT. Gnome Press, 1950.

[BD98] Mathias Bauer and Dietmar Dengler. TrIAs: An Architecture for Trainable
Information Assistants. In Proceedings of the Agents98 Workshop on \Personal
Information Assistants", 1998.

[BD99a] Mathias Bauer and Dietmar Dengler. InfoBeans - Con�guration of Personal-
ized Information Assistants. In Proceedings of the 1999 Conference on Intelli-
gent User Interfaces, 1999.

[BD99b] Mathias Bauer and Dietmar Dengler. TrIAs: Trainable Information Assistants
for Cooperative Problem Solving. In Proceedings of the Agents99 Workshop
on \Personal Information Assistants", 1999. to appear.

[BLCG92] Tim Berners-Lee, Robert Cailliau, and Jean-Francois Gro�. The World-Wide
Web Computer Networks and ISDN Systems. 25:454{459, 1992.

[Bor97] G�unther Born. Referenzhandbuch Dateiformate. Addison-Wesley, �fth edition,
1997.

[Com87] CompuServe Incorporated. Graphics Interchange Format, 1987.

[Com89] CompuServe Incorporated. Graphics Interchange Format, 1989.

[Den99a] Dietmar Dengler. HyQL - A Tutorial. 1999. to appear.

[Den99b] Dietmar Dengler. The HyQL Language Speci�cation. 1999. to appear.

[EMW99] Christoph Endres, Markus Meyer, and Wolfgang Wahlster. Personal Picture
Finder: Ein Internet-Agent zur wissensbasierten Suche nach Personenphotos.
In In: Vogt, F. (ed.): Online'99, Congressband VI, pages 301{315. Velbert:
Online-Verlag, 1999.

96 BIBLIOGRAPHY

[End99] Christoph Endres. The MultiHttpServer - A Parallel Pull Engine. Technical
Report TM-99-04, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz,
1999.

[EW95] Oren Etzioni and DanielWeld. Intelligent Agents on the Internet: Fact, Fiction
and Forecast. IEEE Expert, pages 44{49, 1995.

[Fla97] David Flanagan. Java in a nutshell. O'Reilly, second edition, 1997.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation.
Addison Wesley, 1996.

[Haa99] Jens Haase. BIT { Bitmap Information Tool. 1999. to appear.

[HCF97] Graham Hamilton, Rick Cattell, and Maydene Fisher. JDBC Database Access
with Java. Addison Wesley, 1997.

[KL95] David Kay and John Levine. Graphics File Formats. Windcrest/McGraw-Hill,
second edition, 1995.

[Koh95] Ronny Kohavi. MLC++ Tutorial. Stanford university, 1995.

[Kur90] Raymond Kurzweil. The Age Of Intelligent Machines. Massachusetts Institute
of Technology, 1990.

[KW89] Alfred Kobsa and Wolfgang Wahlster, editors. User Models in Dialog Systems.
Springer Verlag, 1989.

[Mit97] Tom Mitchell. Machine Learning. McGraw-Hill, 1997.

[M�ul99] Jochen M�uller. Ein planbasierter Pr�asentationsagent. PhD thesis, Deutsches
Forschungszentrum f�ur K�unstliche Intelligenz, 1999.

[Mv96] James D. Murray and William vanRyper. Encyclopedia of Graphics File For-
mats. O'Reilly & Associates Inc., second edition, 1996.

[MW98] Mark Maybury and Wolfgang Wahlster, editors. Readings in Intelligent User
Interfaces. Morgan Kaufmann Publishers, Inc., 1998.

[O'N94] Patrick O'Neil. Database - Principles, Programming, Performance. Morgan
Kaufmann Publishers, Inc., 1994.

[Qui86] J.R. Quinlan. Induction of decision trees. Machine Learning, (1:81-106), 1986.

[SE96] Erik Selberg and Oren Etzioni. The MetaCrawler Architecture for Ressource
Aggregation on the Web. 1996.

[WK91] Sholom Weiss and Casimir Kulikowski. Computer Systems That Learn. Mor-
gan Kaufmann Publishers, Inc., 1991.

Index

administrator port, 74
agent interfaces, 16
agents

adaptive, 14
autonomous, 14
collaborative, 14
communicative, 14

exible, 14
goal-oriented, 14
index search agents, 15
information-gathering agents, 15
mobile, 15
presentation agents, 15
search agents, 15

Ahoy, 48, 76
AIA, 10, 33, 45
Altavista, 49
Altavista Photo Finder, 75
animation detection, 18
ANSI, 32
API, 52, 65
APP0 marker, 31, 66
applet

signed, 41
application adaptivity, 34
application extension, 30
application module, 22
architecture, 39
arithmetic operations, 55
automated graphics design, 16
automated improvement, 11
automated layout, 16
autonomous driver, 33
awk, 55

banner, 40
bc, 55

BIT, see Bitmap Information Tool, 17
bitmap format, 28
Bitmap Information Tool, 10, 17
blackwhite, 19
bourne shell, 50, 55
bright, 19
browser independent, 41
by-products, 11

CD ROM, 93
CD shopbot, 61
CERN, 7
CGI script, 23
classi�er, 59
code

reusable, 11
comment extension, 30
communication overhead, 10, 38
compression

LZ77, 30
LZ78, 30
LZW, 30

Computerwoche, 60
connected socket, 27
copyright violation, 9
crawler, 13

dark, 19
data compression, 75
data model, 32
data organization, 32
database, 10, 11, 13, 32, 53, 58
database access, 26
database interface, 39
database schema, 32
data
ow

minimal, 41

98 INDEX

datagram socket, 27
decision tree, 59
dedicated service, 8
DFKI GmbH, 9, 16, 17, 33, 50
dimension analysis, 18
discourse modeling, 16
display

clock, 36
engines, 37
pages, 36
pictures, 36
rejected, 36
stack, 36

domain model development, 22
drawing, 40

Eclipse prolog, 74
evaluation, 16

feedback, 42
feedback icon, 45
�lter, 10
�rewall, 41
ftp, 8

GET method, 70
GFF, see graphics �le format
GIF, 28, 82
GIF87a, 29
GIF89a, 30
gopher, 8
graphics control extension, 30
graphics �le format, 10, 27
greyscale, 19

histogram analysis, 18
HTML-form, 41
http request, 41
Hypertext Query Language, see HyQL
HyQL, 10, 20, 47, 48
HyQL interpreter, 10

icon, 40
IET, 22
image database, 32
Image Magick, 18

InfoBean, 21
information

additional, 44
available, 8
compression, 8
dynamic, 75
evaluation, 8
�ltering, 8
hidden, 8
relevant, 7
required, 7
sorting, 8
source, 37
speci�c, 20
static, 75
user-speci�c, 9

information assistants
plan based, 20

Information Broker, 22
Information Extraction Trainer, 22
information overload, 8
information processor, 8
information system, 7
information theory, 33
InfoSeek, 15
instance-based learning, 58
intelligent user interfaces, 10, 13, 16
interlacing, 28
internet agents, 10, 13
ITA, 22
IUI, see intelligent user interfaces

Jango, 15
Java, 10, 11, 24, 27, 32, 74

applet, 25
networking, 27
SecurityManager, 25
servlet, 25
signed applet, 25
Virtual Machine, 25

Java package
endres.graph, 66
java.applet, 25
java.io, 65

INDEX 99

java.net, 27, 65
java.sql, 26
javax.http, 25

JavaScript, 41
JDBC, 26, 32, 41, 42
JDK, 26
Jerry's Guide To The World Wide Web,

13
JPEG, 28, 31, 83

keyword classi�cation, 13, 19

learning algorithm, 41
Less is more-philosophy, 9
life-like character, 33
lightness, 18
log�le, 42
Lycos, 15, 49
Lycos Bildkatalog, 75

Machine Learning, 11, 33
machine learning, 10, 57
meal plans agent, 64
Metacrawler, 48, 75, 76
metasearch engines, see search engines
metasearch paradigm, 74, 75
minicrawler, 45
mini�nder, 45
MLC++, 58
mode of operation, 37
model-based interfaces, 16
modular implementation, 10
MultiHttpServer, 40, 67
Multimedia input analysis, 16
Multimedia presentation, 33
Multimedia presentation design, 16

netbot, 9, 61

object-oriented, 24
Oracle database, 32
output stream, 45

page handler, 39, 40
painting, 19
PAN, 9, 10, 20

parallel pull, 10, 11, 35
Parallel Pull Engine, 39, 40
partition analysis, 19
performance improvement, 9
Perl 5, 74
Persona, 11, 33, 45
personal internet assistant, 8
PHI, 20
philosophy, 33
PIA, see personal internet assistants
picture analyzer, 39, 40
picture database, 37, 75
plain text extension, 30
planning, 21
platform independent, 24, 41
PNG, 28, 84
portrait picture, 9, 10
POST method, 70
ppftools, 50
PPP, 33, 45
presentation agent, 8, 33
presentation agents, 45
preview, 41
problem speci�cation, 10
Programming by Demonstration, 48
protocol, 69
psychology, 33

quality of service, 13, 50

RAP, 20
reactive behaviour, 34
relational calculus, 32
relational database, 32
request handler, 39, 40
robot, 9

saturation, 18
scalability, 28
scheduler, 69
search engines, 10, 13, 14

index, 74
index-based, 8
metasearch, 8, 74

search handler, 39, 40

100 INDEX

security restriction, 41
server side computation, 10
servlet, 10, 41, 42
shopbot, 61
shopbots, see agents
SOF marker, 66
softbot, 8, 10, 37
SOI marker, 31, 66
Solaris, 38
speech recognition, 33
spider, 13
SQL, 20, 32
stability, 41
Start on demand, 74
State of the Art, 10
statistics, 11, 33
stream socket, 27
supervised classi�cation learning, 58

table, 44
tabula rasa learning, 59
TCP/IP, 27, 38, 41
textual description, 75
thread, 38
thumbnail, 41
Trainable Information Assistants, 20
transparency, 28
TrIAs, see Trainable Information Assis-

tants, 21

umask, 52
unicolor, 19
UNIX, 38
URL generator, 47, 49
user dialog, 22
user feedback, 9, 10, 36, 42, 58
user interaction, 34
user modeling, 16, 22
user port, 73

vector format, 28
Viola browser, 7
virtual webpage, 8

WebCrawler, 15

whatsit?-tool, 65
work

related, 74
working directory, 52
World Wide Web, 7, 13, 20
WWW, 7
WWW service, 10

Yahoo, 13
Yahoo-Visa-Shopping-Guide, 15

